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ABSTRACT

Modern gaseous time projection chambers (TPCs) with high readout segmentation are capable

of reconstructing detailed 3D ionization distributions with voxel sizes of order (100 µm)3. This

enables measurements of the 3D momentum vectors of short, mm-scale nuclear recoils, which is of

interest for neutron measurements, as well as searches for dark matter, where directionality opens

the possibility of identifying the galactic origin of weakly interacting massive particles (WIMPs),

even below the so-called neutrino floor. We perform a variety of experiments and simulations with

eight miniature TPCs filled with a 70:30 mixture of He:CO2 gas at 1 atm pressure. Each so-called

BEAST TPC is of identical design and contains two gas electron multiplier (GEM) amplification

devices and a (2.00× 1.68) cm2 pixel-ASIC readout.

We first detail the measurement of neutron backgrounds at the SuperKEKB e+e− collider in

Tsukuba Japan. We focus on measurements surrounding SuperKEKB’s final focusing magnets

(recorded in 2018) and in the accelerator tunnel surrounding the Belle II detector (recorded in

2020-2021). In our analyses we reject large X-ray backgrounds from the accelerator, resulting

in >99% pure samples of nuclear recoils down to recoil energies as low as 8.0 keVee. We find

excellent agreement between measured and simulated nuclear recoil energy spectra indicating that

our simulations model neutron production well. We additionally introduce a correction for charge

integration bias in observed recoil tracks with high axial inclination. This correction leads to correct

vector directional “head-tail” (sign of 3D vector) assignment for 91% of simulated He recoils ranging

from 40 keVee to about 1 MeVee, with a mean angular resolution of 8◦; a significant improvement

over the 72% head-tail efficiency achieved without these corrections. Applying this technique to

measurement leads to an agreement between measured and simulated angular distributions that

allows us to conclude the existence of a neutron production hotspot in the accelerator tunnel.

While the BEAST TPCs are highly sensitive to ionization, and can detect even single elec-

trons, extending directionality to the keV-scale, as is desirable for dark matter searches, requires

operating the detectors with lower-density gases, at higher gains, and developing improved analysis

techniques. We here focus on the two latter aspects. We improve on existing head-tail classification

methods through the introduction of deep-learning computer-vision algorithms called 3D convolu-

tional neural networks (3DCNNs). We first perform a simulation benchmark study where we train

a 3DCNN to assign directional head-tail to simulated neutron recoils with energies up to 515 keVr

and compare these results to three existing methods of head-tail assignment. We find a head-tail

efficiency of 99.9% on this sample using the 3DCNN, compared to 97.8%, 93.7%, and 79.0% for

existing methods.

Next, we measure neutrons from a 252Cf source incident on separate sides of a TPC. We operate

both at low gain and high gain. At low gain, the simulation-trained 3DCNN reliably identifies

whether the observed recoil points toward or away from the 252Cf source. On a small sample of
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identified He recoils between 39 keVee and 49 keVee, before correcting for residual background such

as back-scattered events, we observe a head-tail efficiency of (62.1± 11.4)%. Using simulation, we

show that the true head-tail efficiency after correcting for residual backgrounds should be greater

than this, marking the first statistically significant observation of event-level head-tail sensitivity

below 50 keVee. At high gain, we attempt to improve our head-tail sensitivity to sub-10-keVr

recoils, and also introduce a 3DCNN for event identification. In simulation, we reject all X-ray

backgrounds down to 5 keVee at 50% nuclear recoil selection efficiency and demonstrate head-

tail efficiencies above 50% for He recoils down to 3 keVr. These results do not yet generalize to

measurement, which is currently being investigated. If the 3DCNN robustness can be improved,

this would be the first demonstration of directional recoil detection at energies relevant for the

directional detection of O(GeV) dark matter particles.

Finally, we perform a study comparing the keV-scale electron background rejection performance

of a 3DCNN to the traditional discriminant of track length, as well as discriminants obtained

from state-of-the-art shallow learning methods in a simulated detector with an 80:10:10 mixture of

He:CF4:CHF3 at 60 torr. We train the 3DCNN classifier using recoil charge distributions with ion-

ization energies ranging from 0.5-10.5 keVee after 25 cm of drift. The charges are initially segmented

into (100 µm)3 bins when determining track length and the shallow learning discriminants, but are

rebinned with a reduced segmentation of (850 µm)3 for the 3DCNN. Despite the courser binning,

compared to using track length, we find that classifying events with the 3DCNN reduces electron

backgrounds by an additional factor of up to 1,000 and effectively reduces the energy threshold of

our simulated TPC by 30% for fluorine recoils and 50% for helium recoils. We also find that the

3DCNN reduces electron backgrounds by up to a factor of 20 compared to the shallow machine

learning approaches, corresponding to a 2 keVee reduction in the energy threshold.

Collectively, the results in this thesis highlight the unique measurements enabled by high-

resolution ionization imaging, and how 3D convolutional neural networks appear ideally suited to

maximally utilize the rich 3D data from detectors with this capability.
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CHAPTER 1
BACKGROUND AND OVERVIEW

To provide context for the original work presented in later chapters, we briefly introduce here

dark matter, directional detectors and their associated performance metrics, and give an overview

of the content covered in this dissertation.

1.1 Dark matter

Astrophysical observations such as discrepancies in mass-to-luminosity ratios of galaxy clusters [1],

and the observation of relatively flat galaxy rotation curves [2] imply the existence of non-luminous

mass around galaxies and clusters that is now referred to as dark matter (DM). By the early 1980s,

it was generally accepted that DM comprises the majority of mass in the universe. Around this

time, so-called hot dark matter (HDM) cosmological models where DM is an ultrarelativistic low-

mass particle, such as a neutrino, were mostly ruled out [3] in favor of cold dark matter (CDM)

models, where dark matter is a heavier, sub-relativistic particle that interacts very weakly with

ordinary matter. Small temperature anisotropies in the cosmic microwave background (CMB)

that were predicted by CDM models, were confirmed by COBE in 1992 [4], further strengthening

the CDM hypothesis. Precise measurements of the CMB temperature power spectrum were later

released by WMAP in 2008 [5] and Planck in 2016 [6], and are in remarkable agreement with the

predictions of the ΛCDM cosmological model (Λ is the cosmological constant that accounts for

the accelerating expansion of the universe [7; 8]). While ΛCDM may not be in agreement with

all cosmological observations [9], it is generally referred to as the standard model of Big Bang

cosmology and it predicts that there are DM halo and subhalo structures that may contain galaxies

[10]. Observations of orbits of halo stars in our galaxy have been used to constrain the mass of

the Milky Way dark matter halo and determine a local DM density at the sun’s distance from the

galactic center of ρ0 = 0.35+0.08
−0.07 GeV/cm3 [11].

While there is strong cosmological evidence for both the existence and abundance of DM, the

true nature of DM remains to be determined and is one of the most fundamental open questions in

particle physics. Over the past three decades, many experiments have investigated the hypothesis

that DM consists of previously undiscovered elementary particles. While the setup and technolo-

gies used in these experiments are diverse, they can be broadly grouped into the following three

categories (Figure 1.1):

(A) Direct Detection: DM + SM→ DM + SM

(B) Indirect Detection: DM + DM→ SM + SM

(C) Collider Searches: SM + SM→ DM + DM or SM + SM→ SM + SM + DM + DM.
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Figure 1.1: Dark matter (DM) and standard model (SM) particle interaction schematic highlighting
three processes depending on the direction we consider time to flow. Case (A), where we consider
time flowing to the right, is representative of direct detection of dark matter where a DM particle
scatters off an SM particle, causing the SM particle to recoil. Case (B), where we consider time
flowing downward, illustrates two DM particles annihilating into two SM particles. Measurements
of the SM particles could lead to an indirect detection of DM. Finally, Case (C), where we consider
time flowing upward, illustrates a particle collider DM search where two SM particles interact
leading to the pair-production of two DM particles.

We’re interested here in direct detection, where a DM particle scatters off a nucleus in the detector’s

target material, leading to a measurable nuclear recoil.

Direct DM detection experiments rely on the following assumptions [12]:

(1) There is a nonzero local DM density, ρ0.

(2) The DM halo is relatively stationary with respect to sun’s rotation around the galactic center.

The recent observations of Ref. [11] support (1), and while (2) is currently lacking observation, N -

body simulations based on the predictions of ΛCDM predict figure rotation of DM halos associated

with Milky Way-like galaxies to be very small [13], suggesting that the Milky Way is not co-rotating

with the DM Halo.

1.2 Directional dark matter and neutron detection

The weakly interacting massive particle (WIMP) remains a compelling CDM candidate [14] that

is expected to interact with SM particles via elastic scattering with nuclei [15]. If the DM flux

incident on Earth is composed of WIMP-like particles, then we can expect that some of these DM

particles will scatter off nuclei leading to nuclear recoils with energies ranging from O(1−100) keV.

Assuming the sun to travel along the galactic plane, then assumptions (1) and (2) imply that in

the rest frame of our solar system, there is a DM velocity distribution incident on our solar system
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coming roughly from the direction of the Cygnus constellation. The inherent time dependence

of the DM velocity distribution observed on a terrestrial detector will modulate annually due to

the Earth’s orbit around the sun, and will also modulate over a sidereal day [16]. The diurnal

modulation of event directions in detector coordinates (Figure 1.2) is equivalent to the presence of

a galactic dipole (Figure 1.3) in galactic coordinates, with clearly distinct directional fluxes of DM

from Cygnus and neutrinos from the sun; the most prominent anisotropic background expected in

a direct DM detector.

Neutrinos can produce backgrounds in a direct DM detector via a process called coherent

neutrino-nucleus elastic scattering (CEνNS) [17]. The energy spectrum of these nuclear recoils

can mimic that of recoils from DM-nucleus scattering, leading to the so-called neutrino floor [18].

If a detector has sufficient ability to resolve nuclear recoil directions and event-times, however,

then it should be possible to reconstruct the galactic dipole, which would lead to an unambiguous

directional signal confirming the galactic origin of DM. Figure 1.2 illustrates this by showing the

expected φ distribution of DM-induced nuclear recoils (blue) and CEνNS-induced nuclear recoils

(red) in a detector at times t0 and t0 + 12 h. A detector with event-level timing and the ability to

resolve angle φ could then distinguish between DM and CEνNS-induced nuclear recoils over the

course of a sidereal day and could also transform these events into galactic coordinates. If the detec-

tor additionally has head-tail sensitivity—the ability to distinguish between recoil direction q̂ and

the opposite direction −q̂—then it should be possible to resolve the so-called galactic-dipole shown

in Figure 1.3. In galactic coordinates, observed CEνNS backgrounds from solar neutrinos will vary

along the Ecliptic over the course of the year, while DM particles will remain stationary near the

Cygnus constellation, providing an unambiguous directional signal of the galactic origin of DM.

Without head-tail sensitivity, the dipole shown in Figure 1.3 would be smeared across two hemi-

spheres, reducing the contrast between the reconstructed neutrino and DM distributions, leading

to an increase in the number of DM recoils required to reject a neutrino background hypothesis.

We’re specifically interested here in directional DM detection, where directional gaseous time

projection chambers (TPCs) [19] are leading detector candidates. Large scale efforts are currently

underway for constructing large (> 10 m3) 3D directional gaseous TPCs [20]. Following the ap-

proach first introduced in Ref. [20] and later expanded upon in [12], we choose to characterize

directional performance using two independent measures called angular resolution and head-tail

recognition efficiency. Here we carefully define these directional performance metrics, as well as

two additional metrics that are important for directional DM detection:

Angular resolution: The mean difference in 3D angle between the axis of the true recoil track

and the axis of the reconstructed observed track. Angular resolution does not depend on sign of the

recoil vector, so it can take on values ranging from 0 to 90◦, however, the expected angle between

two random axes is defined on a hemisphere and given by 〈θ〉 =
∫ π/2
0 dθθ sin(θ)∫ π/2
0 dθ sin(θ)

= 1, so we take
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Figure 1.2: From Ref. [12]: Orientations of DM-induced and CEνNS-induced nuclear recoils ob-
served in a terrestrial detector spaced 12 hours apart. The neutrino and DM-recoil signals will
oscillate over the day as a function of φ but will remain distinct from one another.

Figure 1.3: From Ref. [12]: Simulated distribution of nuclear recoils from 9 GeV DM particles and
solar neutrino backgrounds on a given day in galactic coordinates. Our solar system moves toward
(l, b) = (90◦, 0◦), so the expected DM distribution incident on us from the Milky Way’s DM Halo
peaks in this direction. Observed solar neutrino backgrounds peak toward the direction of the sun
of the sun while the position of the sun varies along the Ecliptic over the course of a year.
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1 radian (∼57◦) to be the limit of no 3D angular resolution and 0◦ to represent perfect angular

resolution.

Head-tail recognition efficiency (εht): The fraction of events where the scalar (dot) product

of the true recoil direction with the direction assigned to the observed event is positive. εht = 0.5

corresponds to no head-tail sensitivity and εht = 1 corresponds to perfect head-tail sensitivity.

Event-level time resolution: The ability to assign accurate timestamps to nuclear recoil events.

Event-level timing is required to transform events into galactic coordinates to directly search for

a galactic dipole signature. Ref. [12] suggests event-timing resolutions σt within 40 minutes are

required to keep angular resolutions due to the spin of the Earth within 10◦. This performance

requirement is easily met by modern gas TPCs where timing resolution is principally limited by

the drift speed of ionization produced by nuclear recoils leading to O(10 ms) timing resolution in

the most pessimistic of cases [21].

Energy resolution: The fractional uncertainty of the energy of an observed event, σE/E. In

general, energy resolution depends on primary ionization fluctuations as well as fluctuations in

gain. Depending on the readout technology used, the dynamic range of the readout may also limit

energy resolution. For our purposes, energy resolution is important for resolving dE/dx well enough

to discriminate between nuclear recoils and electron-recoil backgrounds.

Angular resolution, head-tail sensitivity, and energy resolution all deteriorate at low energy

in gas TPCs, making it very challenging to achieve performance levels sufficient for resolving the

keV-scale nuclear recoils expected from the scattering of O(GeV) DM particles. Furthermore,

even in a deep underground detector environment, electron-recoil backgrounds from the Compton

scattering of gamma rays is expected to overwhelmingly dominate over the expected rates of DM

and CEνNS-induced nuclear recoils. These backgrounds get exponentially more difficult to reject

with decreasing energy, so improving electron background rejection performance is necessary to

elucidate any directionally anisotropic signal originating from DM or neutrinos, and improving

angular resolution and head-tail recognition efficiency are important for distinguishing DM-recoils

from solar neutrino-recoils.

These performance metrics can be readily measured and evaluated at the relevant keV-scale

energies using neutron-induced nuclear recoils. Neutrons interact with gas nuclei in TPCs primarily

via eleastic scattering. In particular, an incident neutron with energy En may elastically scatter

off a gas nucleus with atomic mass A, causing the gas nucleus to recoil with energy Er at an angle
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Figure 1.4: (Adapted from [12]) Selected physics applications possible with directional gas TPCs
as a function of detector volume. We focus on the application of directional neutron detection
(boxed in yellow) with 40 cm3 “micro” TPCs called the BEAST TPCs. The ingredients necessary
for sensitive directional neutrino and DM detection can be demonstrated with directional neutron
measurements in small gaseous TPCs, making these measurements interesting from a research and
development standpoint.
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of θr with respect to the direction of the incident neutron, where

Er =
4A

(1 +A)2
En cos(θr). (1.1)

The neutron-gas nucleus interaction probability is large enough (Figure 3.3) that high statistics

samples of neutron-induced nuclear recoils can be recorded in a laboratory setting with sub-m3

detectors (Figure 1.4).

1.3 Overview of dissertation content

As a whole, we split this work into two parts: In Part I, we demonstrate directional recoil detection

for fast-neutron backgrounds at the SuperKEKB [22] e+e− collider, using 40 cm3 gas-TPCs with 3D

pixel readout known as the BEAST TPCs [23]. In Part II, we introduce the use of deep-learning-

based computer vision techniques called 3D convolutional neural networks (3DCNNs) to improve

both electron background rejection and head-tail recognition efficiency in the BEAST TPCs. While

angular resolution is also important to improve DM sensitivity, Figure 5.1 demonstrates that head-

tail recognition efficiency is the most important quantity to distinguish a DM-recoil event from

a solar neutrino background, which is why we focus on improving head-tail here. We encourage

readers principally interested in directional gas TPC research and development efforts to skim

Chapter 2.4 for an overview of the BEAST TPCs and then skip directly to Part II (Chapter 5).

To break things down further, in Chapter 2, we set the stage for Part I by introducing Su-

perKEKB, Belle II, the BEAST TPCs, and beam-induced nuclear recoil measurements with these

TPCs. We then present two detailed neutron background campaigns and the TPC systems asso-

ciated with them: one using TPCs surrounding SuperKEKB’s final focusing magnets (Chapter 3)

and the other using TPCs in the accelerator tunnel surrounding the Belle II detector (Chapter 4).

The measurements and analyses in Chapter 3 expand on results published in Ref. [24] and provided

useful feedback of neutron backgrounds generated near the collision point of the beams. The results

of this chapter highlight the BEAST TPCs’ abilities of background discrimination and their ability

to measure energy spectra.

The analyses of neutron backgrounds in the tunnel regions outside of Belle II that are pre-

sented in Chapter 4 are published in Ref. [25] and go into more depth and quantify background

discrimination, evaluate angular resolution and head-tail recognition efficiencies of nuclear recoils,

and present a full analysis of the angular distributions of nuclear recoils recorded in the TPCs.

These analyses measure the key performance metrics of directional detection.

In Chapter 5, we utilize 3DCNNs to improve performance of particle identification and head-

tail recognition. This chapter is devoted entirely to head-tail performance, and benchmarks four

separate techniques for assigning head-tail, including a 3DCNN. Since traditional methods for head-

tail identification work well for higher energy neutron-induced nuclear recoils, this is the regime
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we focus on in this chapter so that we can benchmark performance in a familiar, well validated

regime. We find that the 3DCNN considerably outperforms the other three methods of head-tail

assignment in this simulation study.

Chapter 6 bridges the gap from simulation to measurement and details low gain nuclear recoil

head-tail experiments performed in the Vahsen Group Lab at UH. Past and present directional DM

detection experiments such as DMTPC [26], DRIFT [27], and most recently, NEWAGE [28], have

demonstrated head-tail sensitivity for neutron-induced nuclear recoil tracks ranging from O(50-

200 keV). Using 3DCNNs, we, for the first time, demonstrate event-level head-tail sensitivity for

sub-50-keVee measured nuclear recoils. These recoils were recorded in a BEAST TPC filled with

an atmospheric-pressure mixture of He:CO2 gas and operating at a gain of roughly 900. Typically

higher gain and a lower density gas mixture are desirable for low-energy head-tail sensitivity, making

these results all the more promising. Still, these results are a far-cry from the sub-10-keVr event-

level head-tail sensitivity desired for O(GeV) DM mass searches. Higher gains, where we are

closer to being able to read out charge from single-electrons, should get us closer to the goal of

demonstrating head-tail sensitivity in sub-10-keVr recoils.

In Chapter 7, we increase the gain until the charge from single electrons is detected, so that

we can evaluate vector direction at the lowest possible energies. For sub-10-keV nuclear recoils,

we find that particle identification becomes challenging so we introduce a 3DCNN to classify re-

coil species. Training and evaluating the 3DCNN on simulated nuclear recoils, we find excellent

head-tail discrimination performance below 10 keVr. All together, our results on simulation are the

first demonstration of directionality at energies relevant for O(GeV) DM searches, all with desirable

performance. In the latter portion of this chapter, we attempt to bridge the gap between simulation

and measurement and evaluate the performance of our particle identification and head-tail assign-

ment 3DCNNs on high gain measurement. While doing this, we run into the so-called sim2real

gap, where our performance in simulation does not translate into meaningful performance on mea-

surement, so we still have work to do before we can claim any significant head-tail performance in

the O(10 keVr) regime.

Chapter 8 details a separate electron background rejection simulation study of a detector con-

figured better for directional DM applications. This work is currently under peer review in Ref.

[29]. We find that using a 3DCNN outperforms other state-of-the-art machine learning techniques

that require feature engineering. The 3DCNN is also much more robust against added noise than

traditional event discriminants like track length. We note that we are currently investigating pos-

sible bias in our event processing pipeline utilized for the 3DCNN in this study. The electron

rejection performance of the 3DCNN may have been overestimated so the results in this chapter

are preliminary and the reader should consult the forthcoming journal publication for final results.

Finally, Chapter 9 summarizes our overall findings.
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Part I: Neutron background

measurements at SuperKEKB
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CHAPTER 2
SUPERKEKB, BELLE II, AND THE BEAST TPCS

Parts of this chapter are taken from Ref. [25] of which I am first author.

2.1 Overview of SuperKEKB and Belle II

The SuperKEKB accelerator [30] is the upgrade of the KEKB [31] high-luminosity asymmetric-

energy e+e− circular collider located at the KEK laboratory in Tsukuba, Japan. SuperKEKB has

been in operation since 2016 [32] and has been providing collisions for the Belle II B-factory exper-

iment [33] since March 2018 [24]. As of December 2021, SuperKEKB has reached an instantaneous

luminosity of 3.8× 1034 cm−2s−1, and seeks to ultimately achieve a luminosity of 6.3× 1035 cm−2s−1

[34], a factor of 30 greater than the peak luminosity of KEKB. Two storage rings with a 3 km cir-

cumference called the high energy ring (HER) and low energy ring (LER) store 7 GeV electrons

and 4 GeV positrons, respectively. The electrons and positrons collide at a center of mass energy

corresponding to the mass of the Υ(4S) resonance (
√
s = 10.58 GeV), which decays into a BB pair

with a branching ratio of 96% [35]. With a target integrated luminosity of 50 ab−1 over the course

of its operating lifetime, SuperKEKB is the world’s first so-called Super-B-factory.

To reach such ambitious luminosities, SuperKEKB employs a “Nano-beam scheme” proposed

by P. Raimondi [37], where the horizontal and vertical beam sizes at the interaction point (IP)

of the e− and e+ beams are squeezed to σ∗x ≈ 10 µm and σ∗y ≈ 50 nm, respectively. To achieve

vertical betatron functions at the IP (β∗y) small enough to support such narrow beams, a precise

final focusing system that includes a 1.5 T superconducting solenoid was developed. Achieving such

a high luminosity through the squeezing of beams, however, comes at the cost of elevated beam-

induced backgrounds. Continuous measurements of beam-induced backgrounds during accelerator

operation are necessary to inform our background-modeling so that we can anticipate the necessary

countermeasures to enable higher luminosity operation while maintaining background levels within

the tolerances of Belle II. The primary countermeasures for mitigating beam backgrounds at Su-

perKEKB are a system of 31 beam collimators that are located at various points along the HER and

LER storage rings (Figure 2.2), and strategically placed shielding around the beam pipes and on

Belle II detectors. Adjustment of these collimators has a strong effect on single-beam background

levels.

2.2 Overview of neutron backgrounds

Here we’re concerned specifically with neutron backgrounds and refer the reader to the Refs. [32; 24;

39] for more general surveys of beam-induced backgrounds. Neutron backgrounds are particularly
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Figure 2.1: Adapted from [36]. Left: A schematic of the SuperKEKB collider. SuperKEKB
consists of three main sections: (i) An injector LINAC, (ii) a positron damping ring, and (iii) the
main ring which consists of the high energy e− ring (HER) and low energy e+ ring (LER). An
RF gun generates a low emittance electron beam which passes through the LINAC directly into
the HER. The positron beam is created from electron bunches colliding with a tungsten target.
The positron beam is then routed into the damping ring to reduce its emittance before being
injected into the LER. Right: The Belle II detector. The labeled subdetectors are the VerteX
Detector (VXD), Central Drift Chamber (CDC), Electromagnetic CaLorimeter (ECL), Aerogel
Ring-Imaging Cherenkov Detector (ARICH), Time Of Propagation (TOP) Cherenkov counters,
and the KL-µ end cap (EKLM) and barrel (BKLM) layers.
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Figure 2.2: [38] The SuperKEKB collimation system is one of the primary means to mitigate beam
backgrounds. The system contains 31 collimators at various points along the LER and HER. During
the upgrade from KEKB to SuperKEKB, new collimators were installed both throughout the LER
and along both rings near the interaction region (IR).
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difficult to study and mitigate and were responsible for performance degradation in the KLM of

Belle, the predecessor to Belle II [40; 41]. Since neutrons are electrically neutral, they lose energy

primarily from elastic scattering off atomic nuclei, making them highly penetrating if not properly

shielded by low-Z materials. To prevent a similar scenario in Belle II, polyethylene shielding was

installed on the outer KLM end caps, and the RPC layers on both the outer KLM end caps and

two innermost barrel layers were replaced with scintillator-based detectors tolerant of increased

background hit rates [42]. Given the expectation of higher background rates at SuperKEKB over

KEKB, and that these rate estimates have substantial uncertainties [34; 39], neutrons pose a risk

not only to the KLM, but also to other Belle II detector systems where both fast and thermal

neutrons can lead to single event upsets [43; 44]. It is thus important to understand neutron

production at SuperKEKB in order to best assess neutron background remediation measures.

Neutron backgrounds originate from showers that result from off-orbit beam particles or photons

interacting with the atoms in the walls of the beam pipe. Secondaries from these showers excite

particular nuclei via the giant dipole resonance [45; 46], producing neutrons. Neutron production

can arise both from circulating single beams and from collisions. Beam-gas scattering (Coulomb and

Bremsstrahlung) and the Touschek effect are the principal single-beam-induced mechanisms leading

to neutron-producing showers. When beams are colliding, radiative-Bhabha (RBB) scattering

produces photons that travel along the straight section of beam pipes, ultimately colliding with the

beam pipe walls in the region where the beam pipes start to curve. These RBB photon collisions are

highly localized and produce copious amounts of neutrons leading to what we refer to as radiative

Bhabha hotspots. Each mechanism leading to neutron production is difficult to simulate, making it

important to directly measure neutron backgrounds and use these measurements to both improve

our current understanding of neutron backgrounds, and also improve our ability to forecast neutron

backgrounds in future scenarios.

With these goals in mind, we have deployed systems of BEAST TPCs throughout all three beam

commissioning phases of SuperKEKB operation. These TPCs measure neutrons by producing 3D

images of nuclear recoils from fast neutron scattering.

2.3 Overview of beam commissioning phases

Beam commissioning at SuperKEKB is performed in three distinct Phases, with each Phase con-

sisting of both unique and overlapping goals for both the accelerator and Belle II detector groups.

Phase 1 Phase 1 was the first time beams were circulated in the main ring section of SuperKEKB.

On the accelerator side, the goals of Phase 1 were to circulate beams in both the HER and LER,

tune beam optics and collimators to improve beam lifetimes while reducing beam backgrounds, and

vacuum scrub to bake out residual gas atoms present in the beam pipes and thereby reduce the

gas pressure within the beam pipes. Vacuum scrubbing was especially important in the LER, since
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Phase Dates Lpeak [cm−2s−1] # TPCs TPC locations

1
Feb. 2016 -
June 2016

No collisions 4
Surrounding near IP:
(r, z, φ) = (45 cm, 35 cm, {0◦, 90◦, 180◦, 270◦})

2
Feb. 2018 -
July 2018

5.6× 1033 8
Dock ring surrounding the QCS:
(r, z, φ) = (35 cm,–1.3 m, {18◦, 90◦, 198◦, 270◦})
(r, z, φ) = (35 cm,+1.9 m, {22◦, 90◦, 202◦, 270◦})

3
Mar. 2019 -

2030s
3.8× 1034 (Current)
6.3× 1035 (Target)

6
Inner concrete shield wall:
(r, z) ≈ (2 m, {–14,–8.0,–5.6,+6.6,+14,+16}m)

Table 2.1: Timeline of the three beam commissioning phases, the peak luminosities observed, and
approximate locations of each of BEAST TPC during each Phase. Descriptions of the Phase 2 and
Phase 3 TPC systems are found in Chapters 3 and 4, respectively.

the LER was completely replaced when KEKB was upgraded to SuperKEKB. Belle II was not yet

“rolled in” nor were the final focusing Super Conducting Quadrupoles (QCS) installed. In the place

of Belle II, a suite of dedicated beam background detectors known as BEAST II surrounded the

interaction region (IR), with the principal goal of measuring beam backgrounds to assess whether

backgrounds induced from circulating single beams were at a manageable level to move onto Phase

2 and install the QCS and Belle II.

Two of the four installed TPCs were ultimately used for measurement and analysis of nuclear

recoil rates, energy spectra, and directional distributions during Phase 1. Angular resolution was

found to be within 20◦ both for measured and simulated He recoils above 100 keVee, and a head-tail

recognition efficiency of 78% was found using simulated He recoils ranging in ionization energies

between 50 keVee and O(1 MeVee). The Phase 1 BEAST TPC system predates any of the original

work in this dissertation, so we refer the reader to Refs. [47] and [48] for further details about

the system and results. Detailed descriptions of the Phase 1 systems and the results of Phase 1

commissioning from the SuperKEKB accelerator group are found in Ref. [22] and from the BEAST

group in Ref. [32].

Phase 2 The Phase 2 system included the newly installed QCS with a partial installation of

the Belle II detector surrounding the IR. This partial installation of Belle II included all of the

outer layers of Belle II—the KLM, ECL, TOP, ARICH, and CDC—but only a small subset of the

VXD which consists of highly sensitive silicon pixel and strip sensors. The remaining space within

the partially filled VXD volume was populated with an updated suite of BEAST II background

detectors to assess the safety of the planned installation of the full VXD in Phase 3. On the

accelerator side, the main goals of Phase 2 were to produce first collisions, tune beam optics and

collimators to increase luminosity as much as possible while keeping backgrounds safe for Belle II

data collection, and to further vacuum scrub. On the detector side, the main goals of Phase 2 were

to commission Belle II with beams, use the BEAST detectors to measure backgrounds induced from
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hotspots in the region between the QCS final focusing magnets and the IP, and measure luminosity

backgrounds produced by colliding beams. We will detail the Phase 2 TPC operation experience

and an analysis of fast neutron backgrounds measured in the TPCs during this time in Chapter 3.

Descriptions of the entire BEAST Phase 2 campaign and results are found in Ref. [24]. Detailed

information about other BEAST Phase 2 detector systems can be found in Refs. [49; 50; 51; 52; 53].

Phase 3 Phase 3 began in 2019 and is the final stage of Beam Commissioning that will continue

throughout the operating life cycle of Belle II. With Belle II fully installed, Phase 3 accelerator

operation is now ultimately concerned with maximizing luminosity for collecting B-physics data,

while maintaining suitable background levels to prevent detector performance degradation and

enable long term detector operation. Background monitoring is now primarily performed by the

Belle II subdetectors, with a smaller system of upgraded BEAST detectors performing dedicated

background measurements surrounding the QCS and in the tunnel regions surrounding the Belle

II detector. In Chapter 4, we detail analyses of neutron backgrounds measured with the Phase

3 TPC system. More general information regarding the current status of beam backgrounds and

potential future SuperKEKB upgrades can be found in Refs. [34; 39; 54].

2.4 BEAST TPCs

The BEAST TPCs [23] are a second-generation [55] gas time projection chamber developed by the

Vahsen lab at the University of Hawai‘i. Two prototype models and eight identical production

models were assembled and tested in-house and shipped to KEK. The Phase 1 TPC system utilized

the two prototype models as well as two of the eight production models. The prototype models

were shipped back to Hawai‘i after the conclusion of Phase 1 and were not used in any of the

original work in this dissertation. All eight of the production BEAST TPCs were brought to KEK

for Phase 2 and six of those eight are currently operating as the Phase 3 TPC system at KEK.

The remaining two production TPCs were shipped back to Hawai‘i at the conclusion of Phase 2

and one of these TPCs is currently being used for the particle ID and directional head-tail studies

detailed in Chapters 6 and 7.

Each TPC is a 10 × 15 × 31 cm3 vessel with a 2.00 × 1.68 × 10.9 cm3 fiducial volume. The

vessels are filled with a 70:30 mixture of He:CO2 gas, which serves as the target gas with which

neutrons interact. We use the annotated diagram in the left-hand portion of Figure 2.3 to outline

how nuclear recoil events are detected in a BEAST TPC:

(1) When a fast neutron enters a TPC, it may scatter off a 4He, 12C, or 16O nucleus, causing the

nucleus to recoil. The probability of a fast neutron scattering event to occur within the fiducial

volume of a BEAST TPC is in general O(10−4 − 10−3), as shown in Figure 3.3.
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Figure 2.3: Left: A schematic illustrating the steps of detecting a nuclear recoil. These steps are
described in the text. Right: The inside of a BEAST TPC. The key components in the detector
are the field cage, the double gas electron multiplier (GEM) layer, and the ATLAS FE-I4B pixel
chip. An internal GEM divider circuit was developed and installed in each TPC to reduce the TPC
footprint in order to satisfy the spatial constraints of the Phase 2 TPC system. The white disk
mounted on top of the field cage contains a 210Po alpha emitting source that is used to calibrate
the energy scale of the TPCs. We only use 210Po sources to calibrate energy for the Phase 2 and
Phase 3 neutron background analyses (Chapters 3 and 4). The coordinate axes shown define the
TPC coordinate system. The origin is placed on the edge of the readout plane of the pixel chip,
with positive zTPC pointing upward toward the field cage.
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Figure 2.4: Visualization of a 210 keVee nuclear recoil track detected by a BEAST TPC. The color
scale shows the detected charge in each voxel in units of time over threshold (TOT). θTPC is the
zenith angle defined between zTPC and the vector direction of the principal axis of the track, and
φTPC is the azimuthal angle defined between xTPC and the projection of the track’s principal axis
onto the readout pixel chip. The white grid marks illustrate the 250 µm× 50 µm pixel dimensions.

(2) The recoiling nucleus will then collide with other gas atoms in the vessel until it eventually

stops. Along the way, the recoiling nucleus strips electrons off gas atoms within the sensitive

volume, forming an ionization trail. We call this ionization trail the primary track. We note

here that the majority of nuclear recoil events recorded in the BEAST TPCs fall “beyond the

Bragg Peak” (Figure 5.3), meaning the stopping power of a recoiling nucleus falls sharply along

the length of the primary track. This leads to an asymmetry in the charge density along the

length of a track’s principal axis, with less ionization charge expected near the head direction

of the track and more charge near the tail end of the track. This asymmetry can be exploited

to assign a head-tail direction to events.

(3) A uniform electric field along zTPC is provided by an aluminum field cage, causing the ionized

nuclei to drift upward toward the cathode, while the electrons in the ionization trail drift

against the field toward a double gas electron multiplier (GEM) layer [56]. Repeated collisions

with gas atoms lead to a random-walk motion of the electrons drifting against ~Edrift leading to,

on average, a constant drift speed, vd, but with statistical fluctuations in the transverse and

longitudinal direction that is commonly referred to as diffusion.

(4) The charge is avalanche-multiplied as it passes through the double GEM layer. We mostly use

modest double GEM gains ofO(1, 000) (Table 3.1 and Table 4.3 for Phases 2 and 3, respectively)
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to avoid saturation due to the limited dynamic range of the pixel readout when detecting highly

ionizing nuclear recoils. This choice also delays the onset of gas detector aging and lowers the

risk of accidental sparking which might damage the sensitive pixel electronics. In Chapter 7,

however, we increase the double GEM gain up to around 13,400—where the BEAST TPCs are

sensitive to charge from single electrons—to directionally track low energy nuclear recoils

(5) The avalanche-multiplied charge is then detected by an ATLAS FE-I4B pixel chip with a custom

metallization pattern [23; 57; 58; 59]. The ATLAS FE-I4B has a (2.00 cm × 1.68 cm) readout

area consisting of an (80× 336) grid of (250 µm× 50 µm) pixels. The constant drift speed (on

average) of the ionization charge through the field cage volume allows for the construction of

a relative z coordinate, providing a 3D reconstruction of the ionization distribution created

by the recoiling gas nucleus as can be seen in Figure 2.4. Read-out charge is integrated on a

40 MHz clock leading to only a single hit per pixel, as opposed to a full 3D event shape (details

in Chapter 3.3).
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CHAPTER 3
FAST NEUTRON BACKGROUNDS NEAR THE SUPERKEKB

FINAL FOCUSING MAGNETS

This chapter includes and expands upon the TPC results published in Ref. [24] of which I was a

contributing author. It also includes some material from Ref. [25] of which I was first author.

In this chapter we detail an analysis of neutron backgrounds recorded by eight BEAST TPCs

surrounding the QCS final focusing magnets where, prior to measuring them, beam-induced neutron

backgrounds were expected to be high.

3.1 TPC system during Phase 2 of beam commissioning

Figure 3.1: Left: Overview of the Belle II coordinate system. Near the interaction point of the
beams (IP), +z is defined to roughly coincide with the boost direction of colliding beams. Through-
out this Chapter and Chapter 4, we will often use forward (FWD) and backward (BWD) as des-
ignations for z > 0 and z < 0 locations, respectively. Right: Four BEAST TPCs located on the
BWD (−z) side of the IP before the QCS was rolled in. Moving clockwise from the TPC labeled
“TPC #3”, the TPCs are located at φ=18◦, 90◦, 198◦, 270◦, respectively. The locations of the
FWD TPC system, essentially mirror the BWD system (Table 2.1).

The Phase 2 directional fast neutron detection system consists of eight BEAST TPCs, and their

high voltage (HV), low voltage (LV), gas, and data acquisition (DAQ) systems. The TPCs during

Phase 2 were located in the VXD dock ring surrounding the final focusing QCS on either side of

the IR, with locations described in Table 2.1 and shown in Figure 3.1. In order to accommodate
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the strict spatial requirements of the VXD dock ring, we designed and installed identical internal

GEM voltage divider circuits (Figure 2.3) in each TPC [23] that reduced the TPC footprint and are

still in use. Figure 3.1 also shows the Belle II coordinate system which will be used throughout this

Chapter and Chapter 4. The Phase 2 TPC locations were critical for fast neutron monitoring, as

Phase 2 marked the installation of the QCS system, so the measurements recorded by the BEAST

TPCs would mark the first measurements of fast neutron backgrounds resulting from the both

final focusing of the beams, and the decreasing in beam pipe radius between the QCS and the IP.

Given that fast neutrons are highly penetrating, reasonable agreement between measurement and

simulation is critical, because unexpectedly high neutron doses on Belle II electronics could lead to

single event upsets (SEUs) or otherwise degrade detector performance.

3.1.1 Gas System

Maintaining adequate gas purity is essential for achieving relatively stable effective gains in each

TPC. During Phase 1 operation [47], we flowed gas in parallel to four detectors. We auto-regulated

the pressure in each detector separately, controlled only the total flow to all detectors, and mechan-

ically adjusted flow impedance with valves to balance parallel flows. This approach was highly un-

stable, with large flow oscillations and even occasional reverse flow in some of the parallel branches.

Despite this, gas purity and gain stability were better than expected: although there was a brief

initial period of outgassing where gain would slowly rise, after several months of detector operation

with gas flow, the avalanche gain would remain stable for weeks even at minimal or at no flow.

The Phase 2 and Phase 3 gas systems were re-designed based on this experience. Two parallel

flow branches now have separately controlled flows to avoid oscillations, with the serial flow rate

set between 15 and 20 sccm through the three TPCs present in each branch. A 70:30 mixture of

He:CO2 with a minimum purity of 99.999% has been used throughout all three Phases of beam

commissioning. We now walk through the gas system and refer to Figure 3.2, which shows a

schematic representation of all components present in this gas system, when describing the course

of gas flow through the system.

Starting from the gas bottle regulator, 6.4-mm outer-diameter copper tubing with 0.8-mm wall-

thickness is routed from the regulator of the gas bottle to a custom built rack-mounted Gas Box

which serves as the central hub for the TPC gas system. Inside the Gas Box, a T-connector (not

visible in the bottom image of Figure 3.2) splits the gas flow into two parallel paths, with the

flow in each path controlled by a Brooks mass flow controller. Bellows valves are located directly

upstream of each of these mass flow controllers allowing for flow to be manually turned on and off

in each branch.

Immediately downstream of the mass flow controllers, the tubing exits the Gas Box and one

of the two branches is routed to the forward (FWD, see Figure 3.1) TPCs and the other to the

backward (BWD) TPCs. During Phase 2, about 15 m (20 m) of tubing was required to reach the
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Figure 3.2: Top: Schematic of the Phase 3 gas system [not to scale]. The components shown within
the bold gray dashed lines are contained within the custom-designed Gas Box. We used the same
Gas Box in both Phases 2 and 3. Bottom: Inside of the Gas Box.
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FWD (BWD) TPCs from the Gas Box, and in Phase 3, these numbers approximately double to

reach the FWD and BWD tunnels, respectively. Two Swagelok Quick Connect (QC) stems are

attached to the face-plate of each TPC vessel, allowing for easy connection of gas tubing to the

vessels. The gas tubes between each of the four TPCs (three TPCs in Phase 3) in a given branch

are connected in series. After exiting the furthest downstream TPC in each branch, the copper

tubing is routed back to the downstream side of the Gas Box along the same path used to enter

the FWD (BWD) tunnel.

Capacitance manometers (labeled “Pressure gauges” in Figure 3.2) and flow gauges are installed

in each of the two branches on the downstream side of the box for the dual purpose of monitoring

downstream pressure and flow and for identifying if leaks are present between the upstream and

downstream sides of the box. Finally, back-pressure regulators are installed in each branch to

ensure that the gauge pressure never exceeds 5 Psi, and ball valves are present at the downstream

terminus. After exiting the Gas Box, copper tubing is routed an additional ∼20 m away from the

Gas Box (10 m in Phase 3 due to a different location of the Gas Box), where it is then connected

to vinyl tubing that leads to a water trap and finally connects to an exhaust pipe where the gas is

vented out of the building. Two check valves are also located in the downstream side of the Gas

Box to prevent accidental over-pressuring inside the TPCs.

The Gas Box also employs a National Instruments USB-6001 Multifunction I/O device (labeled

“‘USB ADC”) in Figure 3.2) that digitizes the analog signals from the flow controllers, flow gauges,

and pressure gauges for logging on the gas control computer. This device allows for remote control

of the gas system via the mass flow controller, as well as remote monitoring of the pressure in

each branch via the capacitance manometers; upstream flow in each branch via the mass flow

controllers; and downstream flow in each branch via the flow gauges. Pressure and flow readout

values are stored and displayed both locally on the TPC gas system PC and as Process Variables

(PVs) via the Experimental Physics and Industrial Control System (EPICS) interface [60].

3.1.2 HV system

Each TPC contains two high voltage (HV) inputs: one SHV input used to bias the gas electron

multipliers (GEMs) via an internal voltage divider circuit [23], and one UHV input to bias the field

cage. These two HV inputs allow for independent control of the GEM gain and electric drift field.

Two CAEN R1470ETD 8-kV rated 8-channel power supplies are used to deliver HV power to the

TPCs. During Phase 2, both CAEN supplies were mounted on the same electronics rack directly

on top of the Belle II detector on the BWD side of the IP. Two custom HV cables are constructed

for each TPC: one cable, terminated with identical SHV plugs on each end, that provides 2.1 kV

to the GEM voltage divider circuit, and another cable, terminated with an SHV plug on one end

and a 10-kV rated UHV plug on the other end, to provide up to 8.0 kV to the field cage. 12-m

length cables were made for the BWD TPCs and 15-m length cables were constructed for the FWD
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TPCs. Spare 12 m and 15 m cables of both the HV cables biasing the GEMs and those biasing the

field cage were constructed for contingency. Remote control of each HV channel is provided using

CAEN’s proprietary GECO2020 software.

3.1.3 LV and DAQ system

To communicate between the TPCs and the DAQ system (henceforth referred to as the DAQ box),

we construct a custom LV cable for each TPC. Each LV cable includes two Cat-7 ethernet cables

strung side by side and terminated on one end with 14 of the 16 inner wires attached to the socket

of a 19 prong circular Mil-DTL connector, and the other end terminated with two RJ-45 ethernet

plugs; one containing all 8 of its internal wires, and the other containing only 6 of its internal

wires. The FE-I4B chips present inside each TPC are mounted on custom boards which route

power and low voltage differential signal (LVDS) communications between the chip and the DAQ

box through 14 distinct pins that are connected inside the vessel to a 19 prong circular Mil-DTL

plug that is machined into the face-plate of the vessel. The Mil-DTL end of the cable assembly is

thus connected directly to the face-plate of the TPC. The RJ-45 ends of the cable are then routed

between the DAQ box and the TPC. The DAQ box contains RJ-45 sockets that are connected to LV

power-supply channels for providing power to the FE-I4B chips; the RJ-45 end with 6 of its 8 wires

is connected into one of these inputs. The remaining RJ-45 plug of the LV cable is connected to

the ethernet input of a custom Multi-chip Module Card (MMC3) with an attached Xilinx Kintex-7

FPGA. These boards are both powered by a 5 VDC supply and serve as the conduit for LVDS

communication between a PC and the TPC.

3.2 Simulation of beam-induced backgrounds and nuclear recoils

Throughout Phase 2, we utilized a “fast simulation” to model the rates and energy spectra of recoil-

ing nuclei in each TPC. Here we describe the production steps of simulating neutron backgrounds,

as well as their interactions in the sensitive volume of the TPCs:

1. Generation of beam background events: During Phase 2, we only simulate single-beam

background sources, which include Bremsstrahlung, Coulomb, and Touschek backgrounds.

Particle scattering and loss positions are simulated using the Strategic Accelerator Design

(SAD) framework [61]. The kinematic information of these initial background particles is

saved and passed into Geant4 [62; 63; 64].

2. Simulation of background showers and neutron propagation: The Belle II Analysis

Software Framework (basf2) [65; 66] has geometry and material implementations of the entire

interaction region of the SuperKEKB-Belle II system within |z| < 4 m from the IP, which

includes the CDC dock space where the Phase 2 TPCs are located. Once initial background
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particles are loaded, Geant4 simulates the physics of the interaction between these particles

and the materials present within the geometry.

3. Fast simulation of nuclear recoils in the TPCs: The probability that an incident

neutron interacts with a gas nucleus in the gas volume of a TPC depends both on the energy

of incident neutron and the path length the neutron follows through the volume of the TPC

as shown in Figure 3.3. Given the relatively low interaction probability of incident neutrons

with target gas nuclei, obtaining sufficient statistics for the analysis of fully simulated nuclear

recoils from these scattering events is computationally expensive. To save on computational

resources, we instead opt to implement a fast simulation, where for each neutron passing

through the sensitive volume a TPC we:

(a) Assign weights corresponding to the interaction probability of each recoil constituent

associated with the kinetic energy of the neutron incident on the sensitive volume of the

detector. We assign separate weights for He, C, and O recoils.

(b) Draw the nuclear recoil energy Er associated with the neutron-nucleus scattering event

weight from a uniform distribution between 0 and the maximum recoil energy predicted

by neutron-nucleus elastic scattering. In particular we set

Er = RandUnif
[
0, 4A

1+A2En

]
, where En is the kinetic energy of the incident neutron, A

is the atomic mass of the recoiling gas nucleus, and the notation RandUnif[a, b] is to be

understood as a random number selected from the uniform distribution between a and

b inclusively.

Putting steps (a) and (b) together, for each neutron passing through the sensitive volume

of the detector, our fast simulation provides a weight and a corresponding recoil energy for

an He, a C, and an O recoil. The sum of the weights described in step (a) over the elapsed

beam-time of a simulation campaign gives the simulated nuclear recoil rate, and step (b) gives

recoil energy distributions.

Several improvements in the implementation of accelerator and detector components of Su-

perKEKB and Belle II in Geant4 were made. The details of these improvements, as well as the

effect they had on reducing the discrepancies between measured and predicted rates in many of the

BEAST detector systems, are outlined in Ref. [24].

3.3 Calibration and event selection

In this section we describe the steps taken to calibrate charge, gain, and ultimately determine

particle identification (PID) criteria in each TPC. More detailed information about charge readout

and general calibration procedures for the FE-I4B readout chips in these TPCs can be found in
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Figure 3.3: Neutron interaction probability per centimeter (Pint) of gas traversed versus neutron
kinetic energy in a 70:30 mixture of He:CO2 at 1 atm pressure. Elastic scattering cross sections to
produce this figure were obtained from the ENDF/B-VII database [67] and may differ slightly from
those listed in the G4NDL4.6 library.

Ref. [23], and more general information about ATLAS FE-I4B performance and calibration can be

found in Ref. [53].

3.3.1 Data processing

We utilize firmware packaged with the pyBAR readout software [68] that enables asynchronous

triggering of each of the eight pixel chips in the Phase 2 TPC system. We collect data using the

FE-I4 stop mode scan which is initialized by a HitOR signal that is processed by a Xilinx Kintex-7

FPGA connected to an MMC3 baseboard [23]. This stop mode setting allows for up to a 6.4 µs

readout time per event. Throughout all of Phase 2 and Phase 3 TPC operation, this readout

time window was reduced to 2.5 µs to allow for higher trigger rates. Timestamps are assigned to

events with 0.05 s of precision which is sufficient for all beam background analyses. In Appendix A

we detail how timestamps are assigned to events with our asynchronous triggering, as we initially

mistakenly discarded a significant number of events in data processing and analysis campaigns

between 2018 and early 2021. All data in this dissertation has been reprocessed so no events are

discarded in this way.

3.3.2 Pixel-level calibration

Each pixel cell in a given FE-I4B contains a two-stage charge sensitive integrating amplifier, followed

by a comparator with a set threshold voltage that samples on a 40 MHz clock. The comparator
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outputs a logical high whenever the signal from the integrating amplifier is above the threshold

voltage. The time over threshold (TOT) is the amount of time the comparator signal outputs

logical high and thus depends on the amount of charge deposited on the pixel cell.

The first charge above threshold in an event triggers the readout. When an event is triggered,

pixel hit data such as the column and row of the (80×336) pixel matrix, the TOT, and the readout

time (recorded in multiples of 25 ns due to the 40 MHz comparator clock) are recorded. We use the

comparator clock refresh rate to construct a relative z coordinate

zrel,TPC = vdn× 25 ns, (3.1)

where n × 25 ns is the readout time within the 2.5 µs event readout window and vd is the average

drift speed of electrons for the gas and electric drift field strength used.

The charge read out in an FE-I4 pixel can be calibrated by first tuning the comparator threshold

voltage and the TOT. A charge injection circuit located in each pixel injects charge in discrete

voltage steps through two injection capacitors; these injection capacitors make the injected charge

proportional to a variable injection voltage, thereby creating charge pulses of different, known,

magnitude. The pyBAR readout software is packaged with a global tuning script that iteratively

tunes both the threshold and TOT response of the integrating amplifier for all 26,880 pixels in the

chip. The threshold is tuned with a target charge of 2700 e in all TPCs and the TOT response

is tuned to correspond to a saturation limit—the maximum TOT recorded in an event—above

45 000 e. The results of the threshold and TOT scale tunings vary between FE-I4 chips (Table 3.1).

The measured TOT in given pixel hit is represented by a 4 bit integer code ranging from 0 to 13,

with TOT = 0 corresponding to a pixel near threshold and TOT = 13 corresponding to a saturated

pixel.

After tuning the threshold and the TOT response in each TPC, we calibrate the remainder of

the charge scale by sending two hundred injections at each of several distinct charge steps into each

FE-I4B pixel and measure the TOT response in each pixel. The mean of the TOT over all pixels

is recorded for each injection and the mean and standard error of each of these 200 pixel-averaged

TOT values is plotted at each charge step. The TOT-to-charge mapping is not linear, so we use

a bicubic spline interpolation of the injection charge versus mean TOT to determine the charge

corresponding to integer TOT codes ranging between 0 and 13 in steps of 1. For reference, Figures

7.3 and 7.4 illustrate the process of mapping TOT to charge. These figures use different calibration

settings than what is described here, but the general procedure still holds.
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TPC location QTOT=0 [e−] QTOT=13 [e−] Geff [e−] Edrift

[
V
cm

]
vd
[ µm

25 ns

]
BWD 18◦ 2791± 33 47398 634± 75 358 173

BWD 90◦ 2819± 32 47492 542± 40 358 173

BWD 198◦ 2836± 42 47918 997± 58 358 173

BWD 270◦ 2810± 33 47009 729± 46 358 173

FWD 22◦ 2708± 31 47002 874± 82 358 173

FWD 90◦ 2713± 34 48416 668± 150 358 173

FWD 202◦ 2732± 31 46871 515± 82 267 130

FWD 270◦ 2727± 31 46001 978± 67 358 173

Table 3.1: Phase 2 TPC calibration results and settings. Columns from left to right describe:
(i) TPC location in Belle II coordinate system, (ii) measured threshold charge, (iii) measured
saturation charge, (iv) calibrated effective double GEM gains, (v) approximate drift field, and
(vi) approximate drift speed. Threshold uncertainties (ii) are the standard deviation of the pixel
threshold over every pixel in the chip. Gain uncertainties (iv) are given by the standard deviation
of the ionization energy distributions of horizontal alphas in a given TPC. Edrift assumes 10.9 cm
drift length and vd is computed using Magboltz [69] for all TPCs except for FWD 202◦, which
experienced periodic high voltage trips, so its drift field was lowered to ensure stable operation.
The drift speed for FWD 202◦ is estimated by assuming vd scales proportionately as Edrift.

3.3.3 Gain calibration

We calibrate the effective gain of each TPC using alpha particles emitted from the 210Po disk source

installed in each detector (Figure 2.3). The ionization energy from an event in a TPC is related to

the observed avalanche charge, Q, and effective gain of the TPC, G, via

Eionization =
QW

G
, (3.2)

where W = 34.45 eV is the average energy per electron-ion pair of 70:30 He:CO2. The location of

the disk source is identical in each TPC and is chosen so that alpha tracks emitted from the 210Po

source span the entire 2 cm extent of xTPC. This means the ionization energy deposited on the chip

by an alpha with (φTPC, θTPC) ∼ (0◦, 90◦) will be constant within statistical fluctuations and can

thus reliably be used as a reference value to determine G.

To ensure a pure sample of alphas, we calibrate using only alpha tracks that were recorded when

beams were not circulating the main ring. The 210Po calibration sources present in each TPC emit

5.4 MeV alphas, which create long enough ionization distributions to span the entire width of the

chip. To select for alpha tracks, we only keep events that span the entire x length of the chip (events

that hit both column = 0 and column = 79 on the pixel grid) and do not hit either of the y edges

of the chip (neither row = 0 nor row = 335). Using these selections, in our TPC coordinate frame
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(Figure 2.4), we expect the distribution of alpha events to peak at φTPC = 0◦ and θTPC = 90◦.

Simulation shows the expected ionization energy for the portion of an alpha track that spans the

x length of the FE-I4 at the φTPC and θTPC peak of (φTPC, θTPC) = (0◦, 90◦) in 70:30 He:CO2 is

1430 keV. We aim to select alphas near this peak, however during this calibration period where

beams weren’t circulating, the 1.5 T magnetic field from the QCS was still in operation, causing the

alpha tracks in the TPCs to curve slightly from the presence of this magnetic field. As a result, the

θ and φ distributions of alpha tracks were skewed slightly, so we opted to select alphas within ±2◦

of both the mean θTPC and φTPC in each TPC. We expect the ionization energy distributions of

these alphas be approximately Gaussian distributed. We thus plot these distributions and set our

calibrated gain, G, to be the value that centers the ionization distribution of these selected alphas

at 〈Eionization〉 = 1430 keV in each TPC (Figure 3.4). The presence of curvature in these tracks

leads to a slight increase in the expected ionization energy of each event, but we expect this effect

to be at most a few percent, so we acknowledge our calibrated gains (labeled Geff in Table 3.1) to

be slight overestimates.
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Figure 3.4: Ionization energy distributions of calibration alphas that are within ±2◦ of both the
mean θTPC and φTPC in each TPC before and after gain calibrations. We assume an uncalibrated
gain of 2,000 leading to the distributions labeled “Uncalibrated” in each plot. The calibrated gains
that lead to the distributions labeled “Calibrated” in each plot are listed in Table 3.1.

3.3.4 Event classification

For fast neutron analyses, the ionization energy of a track and its length in three dimensions provide

sufficient information for selecting high purity nuclear recoil samples in a TPC. Once charge and

gain have been calibrated, the ionization energy of a track is measured by summing over the energy

deposited in each pixel hit in the event
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Eionization =
∑
hits

Ehit. (3.3)

Before determining nuclear recoil selections, we apply a “fiducialization preselection” where we

reject all events that register pixel hits on any of the four edges of the FE-I4B chip. This removes

calibration alpha tracks since they span the entire xTPC extent of the chip and also helps ensure

that the recorded ionization energy isn’t biased by events with charge outside of the fiducial volume

of the TPC. Using a Singular Value Decomposition (SVD) [70], we identify the principal axis of

each track and take the difference between the highest and lowest values of position along this axis

to be the 3D track length.

Figure 3.5: Energy versus length distributions of all tracks in each TPC during the HER (top
two rows) and LER (bottom two rows) background studies. The red line in each plot shows our
selection boundary; we keep all events with energies above this boundary.
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Figure 3.6: Same as Figure 3.5 except zoomed in and binned into (80 µm × 2 keVee) bins. The
color scale shows the relative number of events per bin on an increasing logarithmic scale with blue
representing few events, and yellow representing the most events.

Figures 3.5 and 3.6 show distributions of track energy versus length in each of the eight TPCs

after the fiducialization preselection. In each plot, there are three distinct dE/dx bands. The rela-

tively flat lowest energy band (dE/dx ∼ 0) corresponds to electron recoils from X-ray conversions,

which is the predominant source of background in all TPCs. The remaining two curved dE/dx

bands correspond to, in order of increasing dE/dx: 4He recoils and 12C/16O recoils. The dE/dx

distributions of recoiling 12C and 16O nuclei are similar enough that we do not distinguish between

them in measurement. We use a single signal selection boundary (red line in Figures 3.5 and 3.6)

for all TPCs and all Phase 2 background studies. We prioritize nuclear recoil purity when defining

this selection boundary and start with a preselection where we only keep events with E > 40 keVee.

Figure 3.6 shows a zoomed-in 2D histogram of energy versus length binned into (80 µm× 2 keVee)

bins with the number of entries in each bin denoted by color. A common logarithmic color scale is
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shared among every plot in this figure, with blue representing few events and yellow representing

lots of events. We can see that our E > 40 keVee preselection rejects the vast majority of events as

X-ray backgrounds. Due to our lack of fully simulating recoil events, we are unable to use simula-

tion to inform the dE/dx portion of our event selection boundary, so we generate this portion of

the boundary “by eye” and keep events that are clearly within the 4He and 12C/16O recoil bands.

In Chapter 4.3 we perform similar event selections in a much more systematic way for Phase 3

background studies where we do have fully digitized simulated TPC events.

3.3.5 Merging accelerator and TPC data

Summaries of key SuperKEKB parameters are stored as process variables using the Experimental

Physics and Industrial Control System (EPICS PVs) [60] that update every second. These PVs are

archived internally for Belle II and SuperKEKB collaborators using custom software built around

the EPICS Archiver Appliance [71]. All accelerator parameters used in this analysis are extracted

from this PV archiver and are merged with calibrated TPC data by matching integer timestamps

of TPC data with integer timestamps of all accelerator PVs. For cases where there are multiple

TPC events within a one second window, the accelerator data is duplicated for each TPC event.

In this way, when we model nuclear recoils as a function of accelerator parameters, these models

are rate weighted.

3.4 Modeling beam-induced backgrounds

Dedicated single-beam HER and LER studies were conducted on June 11th, and June 12th, 2018,

which we will refer to as the HER study and LER study, respectively. Figure 3.7 shows how several

accelerator parameters vary over the course of these studies. Each of the cyan regions in this figure

show the beam storage periods where collected TPC data was analyzed. Within these storage

fills, we see that beam currents IHER/ILER, and beam-pipe pressures, PHER/PLER are varied, and

between certain storage fills, vertical beam sizes (also called vertical bunch widths), σy,HER/σy,LER

and numbers of bunches, nb,HER/nb,LER, are varied. Since Touschek backgrounds vary with charge

density, explicitly changing the total number of bunches or the vertical bunch width provides a probe

for disentangling Touschek background contributions from beam-gas contributions. Our aim in the

coming sections is to disentangle all contributions to beam-induced background rates, which allows

for a direct comparison between the observed and predicted neutron background compositions,

providing validation of our modeling of the mechanisms of neutron background production at

SuperKEKB. Nuclear recoil rates from collision-induced luminosity backgrounds were found to be

negligible in the TPCs during Phase 2 so we do not discuss Phase 2 luminosity backgrounds here.
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Figure 3.7: Beam currents, I, average beam-pipe pressures around the ring, P , vertical beam sizes,
σy, and numbers of bunches nb plotted as a function of time over the course of the HER (top)
and LER (bottom) studies. The cyan-filled regions represent beam storage periods where data was
analyzed. We note that the largest HER beamsize periods are omitted from our analysis, due to
an increase in background that wasn’t understood at the time.
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3.4.1 Beam-gas backgrounds

Beam-gas scattering occurs when e+ and e− beam particles interact with gas atoms present within

the beam pipes. These interactions can either happen through Coulomb scattering between the

beam particle and the gas atom, or through Bremsstrahlung. To good approximation, the rate of

beam-gas scattering events in a given ring is proportional to IPZ2, where I is the beam current,

P is pressure at a given position along the ring, and Z2 is the square of the atomic number of the

gas constituent that the beam particles interact with.

We employ a physically motivated parametrization of nuclear recoil rates, R, that encapsulates

the sensitivity of R to beam-gas and Touschek background components. Though beam-gas scat-

tering rates scale as IPZ2, there are only 3 residual gas analyzers present around the ring that can

provide measurements of the gas composition inside the beam pipe. Since we are unable to directly

measure this local gas composition variation throughout the majority of the accelerator rings, we

parameterize the beam-gas contributions to nuclear recoil rates, Rbg as

Rbg = B · IP, (3.4)

where we absorb Z2 into the beam-gas sensitivity parameter, B. Absorbing Z2 into B means that

B is not a constant and will in general vary with time and position along the beam pipe, so our

treatment of B as a constant in our analyses is a source of uncertainty that we do not explicitly

measure. In practice, however, we find that our constant-B model, when including Touschek

backgrounds, describes our measurements well (Equation (3.8); Figures 3.8 and 3.9) so we expect

that our absorption of Z2 will simply bias the agreement between measured and simulated nuclear

recoil rates away from unity.

We also don’t account for local variations in beam pipe gas pressure around the ring during

these Phase 2 analyses. We instead model pressure contributions to beam-gas scattering rates

assuming a uniform pressure distribution given by the average beam-pipe pressures in the HER

and LER beam pipes (during Phase 3, we do account for pressure variations as can be seen in

Chapter 4.4.1). Equation 3.4 is thus a simplified parametrization that encapsulates the beam-gas

contributions from a given beam pipe to the observed nuclear recoil backgrounds in a TPC. This

model can be applied to both beam pipes so for a given beam pipe, we write

Rbg,i = Bi · IiP i; i = HER, LER. (3.5)
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3.4.2 Touschek and total single-beam-induced neutron backgrounds

The Touschek effect describes Coulomb scattering between particles within an individual beam

bunch, causing the momenta—and by extension, the orbits—of the Touschek scattered particles to

deviate from those of the rest of the bunch [72]. For a single beam particle within a bunch, the

Touschek scattering rate is proportional to the particle density of the bunch, Ib/(σxσyσz), where

Ib is the bunch current, σz is the longitudinal bunch width, and σx and σy are the horizontal and

vertical transverse bunch widths. To model the Touschek background rates around the ring, we

multiply the Touschek scattering rate of a single particle by the number beam particles around

the ring, Ibnb, where nb is the number of bunches in the beam train, suggesting that Touschek

scattering rates, RT , can be parametrized as

RT = T ·
I2
b nb

σxσyσz
, (3.6)

where T is the experimental Touschek sensitivity parameter that encodes all effects contributing to

Touschek background rates that aren’t explicitly adjusted in the experiment. In the analyses that

follow, we measure T for nuclear recoils observed in the TPCs, so moving forward, RT is understood

to be the number of Touschek scattering-induced nuclear recoils measured by a TPC. During the

data collection periods for these background studies, σx was not well measured and measurements

for the longitudinal bunch length, σz, were not provided. We thus absorb the effects of σx and σz

into T , leaving us with a final Touschek background rate parametrization in each ring of

RT,i = Ti ·
I2
i

σyinbi
; i = HER, LER, (3.7)

where we have used Ib = I/nb to express the bunch current in terms of beam current I and

number of bunches nb. Since we restrict our analyses to beam storage fills, beam-gas and Touschek

contributions will overwhelmingly dominate the single-beam-induced nuclear recoil rates observed

by the TPCs. Following the lead of Ref. [32], we thus combine Eqs. (3.5) and (3.7) and write

RSB,i = Rbg,i +RT,i (3.8)

= Bi · IiP i + Ti ·
I2
i

σyinbi
; i = HER, LER,

as our combined single-beam background parametrization. Fitting measured nuclear recoil data with

this parametrization provides empirical measurements of Bi, and Ti, which can then be compared

with simulation and used to extrapolate expected single-beam-induced TPC event rates to different
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accelerator conditions.

3.5 Analysis and results

Here we detail the composition, energy spectra, and spatial distributions of fast neutron background

events measured in the TPCs. Together, this information paints a picture of how well we model the

neutron production mechanisms, material description, and geometry of neutron production near

the QCS final focusing, which is crucial for assessing the safety of Belle II electronics to fast neutron

backgrounds produced near the IP that radiate outward toward the outer Belle II detectors.

3.5.1 Background composition and rates

Coefficients Bi and Ti from Equation 3.8 are used to estimate the fractional contributions of beam-

gas and Touschek backgrounds in each ring for a given set of machine parameters {Ii, P i, σyi, nbi}.
We measure these coefficients by recasting Equation 3.8 as

RSB,i

IiP i
= Bi + Ti ·

Ii

σyinbiP i
, (3.9)

and performing a linear fit to
RSB,i

IiP i
versus Ii

σyinbiP i
. Figures 3.8 and 3.9 show the results of these

fits for the HER and LER studies respectively, with the beam-gas contributions shaded in pale

gray and Touschek background contributions shaded in dark gray. Data from the study periods

with the beam-emittance control knob setting that corresponded to the largest HER vertical beam

sizes were omitted from these fits (Figure 3.7 shows these study periods not highlighted in cyan

indicating that they weren’t included in these analyses), as this emittance control knob setting led

to an unexpected increase in background rates.

Ring I [mA] P [nPa] σy [µm] nb
HER 287 133 36 789
LER 341 133 38 789

Table 3.2: Key machine parameters used for SAD simulation of beam-induced backgrounds. We
use Bi and Ti; i = HER, LER to scale measured rates to these machine conditions.

Figure 3.10 summarizes the background composition versus TPC location for the HER study

(top) and LER study (bottom). To generate this figure, we use coefficients Bi and Ti to scale

measured LER and HER background rates to the conditions used to simulate beam-induced back-

grounds in SAD that are shown in Table 3.2. In general, we find that simulation over-predicts

LER neutron backgrounds and under-predicts HER neutron backgrounds. Looking at background
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Figure 3.8: Fits from Equation (3.9) performed on data recorded during the HER study. The pale
gray shaded region shows the beam-gas contribution to nuclear recoil background rates and the
dark gray region shows the Touschek contribution to nuclear recoil background rates.
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Figure 3.9: Same as Figure 3.8 but for the LER study.
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Figure 3.10: Comparison of modeled and measured beam-gas and Touschek backgrounds for the
HER study (top) and LER study (bottom) in each TPC (TPC location listed as the horizontal axis
label). The black markers with solid red and blue errorbars show measured rates and the dashed
lines show simulated rates.
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compositions, in both studies, we find that we correctly model that beam-gas backgrounds domi-

nate over Touschek backgrounds, especially on the BWD side of Belle II. By comparing the relative

measured and simulated rates between TPCs while ignoring normalization, we further find that

overall neutron background localization is modeled well, particularly with the dominant beam-gas

backgrounds and on the BWD side of Belle II. This relative agreement was not expected given the

complexities of modeling neutron backgrounds in this region.

3.5.2 Energy spectra

Figures 3.11 and 3.12 show comparisons of measured and simulated nuclear recoil energy spectra

above our threshold of 40 keVee for the HER and LER background studies, respectively. Despite

using a fast simulation as described in Chapter 3.2, we find very good agreement between measured

and simulated nuclear recoil energy spectra in most TPCs. This agreement suggests that the

material description of components that neutrons interact with from their production to when they

reach the TPCs is modeled reasonably.

3.6 Neutron flux estimates and extrapolations to future accelera-

tor conditions

Ring I [mA] P [nPa] σy [µm] nb
HER 1,820 17 0.164 1,576
LER 2,520 48 0.166 1,576

Table 3.3: Machine parameters of interest corresponding to SuperKEKB’s target luminosity for
2027.

We can use the measured background sensitivity parameters BHER, BLER, THER, and TLER to

compute pessimistic estimates of neutron fluxes produced near the QCS final focusing both at the

Phase 2 operating conditions shown in Table 3.2 and at machine conditions representative of the

2027 target luminosity of 2.8× 1035 cm−2s−1 shown in Table 3.3, which were obtained from Ref.

[34]. We use the following procedure to determine the estimated neutron fluxes through each TPC:

1. Use Equations (3.5) and (3.7) to estimate the measured beam-gas and Touschek components

contributing to the overall nuclear recoil rates from both the LER and HER at the machine

conditions listed in Table 3.2 (for Phase 2 estimates) and Table 3.3 (for 2027 estimates).

2. Convert these nuclear recoil rates into an annual neutron fluxes. We use the following proce-

dure to compute these:

39



0 500 1000 1500 2000 2500
E [keVee]

10 4

10 3

10 2

10 1

BWD 18

0 500 1000 1500 2000 2500
E [keVee]

10 4

10 3

10 2

10 1

BWD 90

0 500 1000 1500 2000 2500
E [keVee]

10 4

10 3

10 2

10 1

BWD 198

0 500 1000 1500 2000 2500
E [keVee]

10 4

10 3

10 2

10 1

BWD 270

0 500 1000 1500 2000 2500
E [keVee]

10 4

10 3

10 2

10 1

FWD 22

0 500 1000 1500 2000 2500
E [keVee]

10 4

10 3

10 2

10 1

FWD 90

0 500 1000 1500 2000 2500
E [keVee]

10 4

10 3

10 2

10 1

FWD 202

0 500 1000 1500 2000 2500
E [keVee]

10 4

10 3

10 2

10 1

FWD 270

HER study

Figure 3.11: Comparison of measured (black points) and simulated (blue bars) nuclear recoil energy
spectra above 40 keVee for the HER background study. All distributions have been normalized to
an integral of unity.
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Figure 3.12: Comparison of measured (black points) and simulated (blue bars) nuclear recoil energy
spectra above 40 keVee for the LER background study. All distributions have been normalized to
an integral of unity.
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(a) Given the orientations of the TPCs surrounding the QCS, we would expect that most

neutrons are incident on the radially innermost surface of a TPC, so they would travel

approximately along the TPC y-direction. The neutron-gas nucleus interaction prob-

ability, Pint, is in general is O(10−4)/cm so we would estimate the rate of neutrons

passing through the TPC as the nuclear recoil rate divided by Pinty, where y ∼ 2 cm is

the fiducial y-length of the TPC.

(b) The x-z plane of the TPC is the area we would use to scale this neutron rate to an

incident flux, so we divide the neutron rate from part (a) by xz = (1.68 cm× 10 cm) to

get the estimated neutron flux incident on a TPC.

Following this procedure, we obtain the fluxes shown in Tables 3.4 and 3.5.

TPC
Location

ΦBG, HER

[1011/cm2/year]
ΦT, HER

[1011/cm2/year]
ΦBG, LER

[1011/cm2/year]
ΦT, LER

[1011/cm2/year]
Safety
factor

BWD 18◦ 0.053±0.006 0.013±0.001 0.054±0.001 0.007±0.001 8

BWD 90◦ 0.066±0.007 0.016±0.002 0.036±0.001 0.002±0.001 8

BWD 198◦ 0.149±0.010 0.024±0.002 0.025±0.001 0.003±0.001 5

BWD 270◦ 0.089±0.007 0.013±0.002 0.036±0.001 0.002±0.001 7

FWD 22◦ 0.064±0.006 0.005±0.001 0.009±0.001 0.006±0.001 12

FWD 90◦ 0.043±0.004 0.003±0.001 0.010±0.001 0.007±0.001 16

FWD 202◦ 0.037±0.004 0.000±0.001 0.013±0.001 0.014±0.001 16

FWD 270◦ 0.030±0.004 0.005±0.001 0.008±0.001 0.009±0.001 19

Table 3.4: Estimated annual (Snowmass year = 107 seconds) neutron flux incident on each TPC
for each background type and each storage ring scaled to the Phase 2 machine conditions shown in
Table 3.2. Safety factors are computed using the sum of each of these fluxes assuming an annual
Belle II flux tolerance of 1011 neutrons/cm2.
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TPC
Location

ΦBG, HER

[1011/cm2/year]
ΦT, HER

[1011/cm2/year]
ΦBG, LER

[1011/cm2/year]
ΦT, LER

[1011/cm2/year]
Safety
factor

BWD 18◦ 0.043±0.005 55.4±6.4 0.143±0.003 45.0±7.6 0.01

BWD 90◦ 0.053±0.006 70.3±7.1 0.097±0.003 11.6±5.7 0.01

BWD 198◦ 0.120±0.008 105±9.5 0.067±0.002 20.4±5.4 < 0.01

BWD 270◦ 0.072±0.006 55.7±7.1 0.096±0.003 12.1±5.8 0.01

FWD 22◦ 0.052±0.004 21.6±5.4 0.023±0.003 35.5±5.8 0.02

FWD 90◦ 0.034±0.004 13.2±4.3 0.026±0.002 42.5±5.0 0.02

FWD 202◦ 0.030±0.003 1.23±3.7 0.034±0.002 86.2±5.5 0.01

FWD 270◦ 0.024±0.003 20.1±4.2 0.021±0.003 55.0±5.5 0.01

Table 3.5: Estimated annual (Snowmass year = 107 seconds) neutron flux incident on each TPC
for each background type and each storage ring scaled to the 2027 target luminosity conditions
shown in Table 3.3. Safety factors are computed using the sum of each of these fluxes assuming an
annual Belle II flux tolerance of 1011 neutrons/cm2.

From these flux estimates, we ultimately concluded that fast neutron backgrounds near the

QCS final focusing were safe enough to move onto Phase 3 operation, however additional tuning

of horizontal collimators was needed to reduce Touschek backgrounds to sustainable levels in the

long run.
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CHAPTER 4
FAST NEUTRON BACKGROUNDS IN THE SUPERKEKB

TUNNEL OUTSIDE OF BELLE II

This chapter is a modified version of an article published in the peer-reviewed journal Nuclear

Instruments and Methods in Physics Research - section A (NIM-A) [25] of which I am first author.

Some of the introductory material from that reference was moved to Chapters 2 and 3, and we also

elaborate on certain portions of the analyses presented there, but otherwise much of the text remains

unchanged.

4.1 Introduction

Of the principal neutron production regions at SuperKEKB, the tunnel regions surrounding either

side of Belle II were not instrumented in Phases 1 or 2. In this chapter, we analyze fast neutron

background measurements recorded by the Phase 3 TPC system which has been in operation

since March 2019, and is comprised of six TPCs: three in the BWD tunnel, which corresponds to

zBELLE < −4 m and three in the FWD tunnel, which corresponds to zBELLE > 4 m (Figure 4.1).

Similar to Phase 2, we make comparisons between measurement and simulation to evaluate the

accuracy of our fast neutron background modeling to assess appropriate remediation measures. For

Phase 3, however, we produce a full simulation that includes digitized simulated recoil events in

each TPC, allowing for a much more detailed analysis. In particular, we make direct comparisons

between measured and simulated rates, energy spectra, and directional distributions of nuclear

recoils in the TPCs. All reported measurements were recorded during two dedicated background

study days conducted on May 9th, 2020 and June 16th, 2021, which we will refer to as Study A

and Study B, respectively.

4.1.1 Radiative Bhabha Hotspots

In the previous chapter we discussed beam-gas and Touschek interactions as the principal single-

beam induced neutron production mechanisms. Luminosity backgrounds, which are backgrounds

produced from colliding beams, are expected to be a large source of neutron production in the tunnel

regions surrounding Belle II. Through-going photons, emitted from radiative Bhabha (RBB) or two

photon production processes from colliding beams at the IP, travel along the straight section of

the beam pipes and ultimately collide with the walls of the beam pipes in the regions where

the beampipes start to curve. When these photons have sufficiently high energy, they can cause

excitations of atomic nuclei in the beam pipes, called giant resonances [45; 46], which emit copious

amounts of neutrons in highly localized regions. The cyan traces in Figure 4.1 draw straight lines
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between the simulated production points of such neutrons and where they pass through a given

TPC. We call the green-shaded regions in this figure Radiative Bhabha (RBB) hotspots, as RBB-

produced photons are expected to produce the majority of neutrons in these regions. The Phase 3

TPC system aims to confirm the existence of these hotspots in measurement, as they have never

before been measured at SuperKEKB.

4.1.2 TPC system during Phase 3 of beam commissioning

The Phase 3 directional fast neutron detection system consists of six BEAST TPCs [23], and their

high voltage (HV), low voltage (LV), gas, and data acquisition (DAQ) systems. Figure 4.1 shows

the locations of each of the TPCs drawn to scale as yellow boxes. The location of each TPC was

chosen with the goal that the TPC would detect background neutrons generated from the predicted

RBB hotspots.

BWD Tunnel FWD Tunnel

Figure 4.1: Geant4 material scan of the Belle II detector and the SuperKEKB accelerator rings with
each of the six Phase 3 TPCs shown to scale as yellow boxes. The coordinate axes on the far right
show local TPC coordinate systems in reference to Belle II coordinates. The magenta and cyan
traces represent simulated background neutrons passing through the sensitive volume of a TPC,
produced from single beams and collisions (luminosity), respectively. Each trace originates at the
production point of the simulated neutron and terminates at the TPC vessel. The majority of
luminosity-induced simulated neutrons come from two highly localized regions (“hotspots”) shown
in green.

Where possible, we repurposed the components of the Phase 2 TPC system for use with the

Phase 3 TPC system. For gas delivery, we installed new tubing to route between the Gas Box and

the new TPC locations, but otherwise use the remainder of the Phase 2 system, including the Gas

Box (Chapter 3.1.1). Due to cable length restrictions for LVDS communications, we split our DAQ

system into two parallel systems; one located near the BWD side of Belle II and one near the FWD
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side. We repurposed the Phase 2 DAQ box to the “FWD DAQ room” and built an additional DAQ

box with identical specifications and installed it in the “BWD DAQ room.” All together these two

DAQ rooms each housed a DAQ box with an associated DAQ computer, two LV power supplies,

and one HV power supply. Using this parallel DAQ and HV system scheme, we were able to keep

the length of our newly constructed LV and HV cables to between 35 m and 45 m.

4.2 Simulation of TPCs, beam-induced backgrounds, and nuclear

recoils

During Phase 3, we employ a multi-step Monte-Carlo (MC) full simulation pipeline to produce

files containing digitized recoils in each TPC, which can be compared directly with experimentally

measured recoils. We describe the production steps here:

1. Generation of beam background events: Like with Phase 2, we use SAD to gener-

ate single-beam Bremsstrahlung, Coulomb, and Touschek backgrounds. In Phase 3 we also

simulate luminosity backgrounds, as Luminosity backgrounds are expected to dominate over

long term accelerator operation. We use FORTRAN based event generators [73] to simulate

background particles originating from collision-based physics processes. The kinematic infor-

mation of all initial background particles is saved and passed into Geant4 [62; 63; 64].

2. Simulation of background showers and neutron propagation: We use a custom “far

beamline” geometry implementation in Geant4 that is integrated into the Belle II Analysis

Software Framework (basf2) [65; 66]. This far beamline geometry extends the geometry and

material description of accelerator and detector components from the |z| < 4 m region used

in Phase 2, out to |z| < 29 m. Figure 4.1 shows a cross sectional material scan of this

region which includes material descriptions of the beam pipes, magnets, collimators, Belle

II detectors, and background detectors including BEAST TPCs. Once initial background

particles are loaded, Geant4 simulates the physics of the interaction between these particles

and the materials present within the geometry. Neutron interactions are simulated using the

Geant4 Neutron Data Library (G4NDL4.6) [74]. The positions and momenta of all particles

depositing energy within the sensitive volume of each TPC are saved. The initial production

positions and momenta of all neutrons depositing energy within a TPC are also saved.

Since Phase 2, many improvements have been made to the implementation of tracking and

recording SuperKEKB losses in SAD [54], as well as the implementation of accelerator and detector

components for SuperKEKB and Belle II in Geant4 [24; 39].
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4.2.1 Simulation of TPC detectors

Figure 3.3 shows the probability of an incident neutron interacting with a gas nucleus per centimeter

of travel within the fiducial volume of the vessel. Given the low probability of interaction of a

neutron passing through the fiducial volume of a TPC, we scale up the elastic scattering cross

sections between neutrons and 4He, 12C, and 16O nuclei in the G4NDL4.6 library, each by factors

of 100. This factor of 100 scale-up reduces the computational resources necessary to produce a

full simulation with adequate simulated nuclear recoil statistics for analysis and leads to a roughly

100-fold increase in the nuclear recoil detection efficiency in each TPC. When comparing measured

and simulated nuclear recoil rates in the TPCs in Chapter 8.5, we compensate for this interaction

cross section scale-up by dividing the rates predicted by simulation by 100.

The Geant4 simulation step provides energy deposits, positions, and momenta of simulated

particles within the sensitive volume of a TPC. For each energy deposit, an ionization distribution

is created with the number of electrons in the distribution determined from a random Gaussian

distribution centered at µ =
Edep

W , with spread σ =
√
Fµ. Here W is the work function (average

energy per electron-ion pair) of the gas mixture, F is the Fano factor, and Edep is the ionization

energy of the energy deposit. W is determined to be 34.45 eV using Garfield++ [75] and F is

set to 0.19, as provided by Heed. Each ionization distribution is then read into a TPC simulation

framework developed by our lab.

This custom TPC simulation models the ionization drifting through the simulated field cage

volume toward a double GEM layer where the charge is amplified and then “pixelized” into a

2.00 × 1.68 cm2 plane containing an 80 × 336 array of 250 × 50 µm2 pixels, mimicking the FE-I4B

sensitive area. All position resolution effects in the TPC are modeled using Gaussian effective

resolutions, as described in [76]. Longitudinal and transverse diffusion constants for the drift

volume, and for high-field regions internal to the readout plane were estimated using Magboltz

[69]. Each primary electron is diffused individually in three dimensions, based on these diffusion

constants and the drift distance to the readout plane. Avalanche gain is simulated at the single-

electron level, using an exponential gain distribution. Secondary electrons after gain are again

smeared individually, by a combined readout resolution. In the transverse direction, this readout

resolution includes contributions from quantization into two GEM holes, diffusion in the transfer

gap between the GEMs, and diffusion in the collection gap between the bottom GEM and the

pixel chip. Longitudinal diffusion in the same two regions is also included. Finally, the charge is

quantized into FE-I4B pixels and readout time bins, and converted into pixel chip-specific charge

units called time over threshold (TOT; see Chapter 4.3), based on TPC-specific chip calibration

configurations which mimic the experimentally determined charge calibration to convert TOT into

charge. These simulated quantized charge distributions encode the same 3D information present

in a measured event.
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4.2.2 Description of simulated samples generated for analysis

Separate samples for Coulomb, Bremsstrahlung, and Touschek scattering were generated in each

ring assuming beam optics and machine parameters representative of conditions recorded during

Study A. The number of initial simulated particles passed into Geant4 from these single-beam

sources is determined from the loss distributions computed by SAD. The effects of beam pipe pres-

sure on beam-gas losses in SAD are weighted based on measurements from over 300 cold cathode

gauges (CCGs) spread around each ring. This implementation [39] provides a more realistic model-

ing of the beam pipe gas pressure than assuming uniform pressure distributions as was done in Phase

2. Base and dynamic pressure contributions to the SAD simulated Coulomb and Bremsstrahlung

losses are separated into individual components, with the base pressure sample assuming P (I = 0 A)

and the dynamic pressure sample assuming P (I = 1.2 A)− P (I = 0 A). Machine parameters used

in determining losses are summarized in Table 4.1. Collimator tip scattering and a more accurate

beam pipe shape were also implemented in SAD [54], giving better confidence in the modeling of

losses from circulating beams around the ring.

I[A] σy[µm] nb Luminosity [cm−2s−1]

LER 1.2 37 1576
2.5× 1035

HER 1.0 36 1576

Table 4.1: Accelerator and luminosity conditions used to generate MC events.

Background
Type

Simulated
Beam Time [s]

(LER,HER)

Coulomb (4,40)
Bremsstrahlung (40,400)

Touschek (0.4,1.6)
Radiative Bhabha 0.0097

Two-Photon 0.01

Table 4.2: Total simulated beam time for each background process. Values within the parenthetical
numerical pairs denote the beam time of single-beam simulation samples in each ring.

For luminosity background samples, we found that the overwhelming majority of simulated

radiative Bhabha background events come from the BBBREM event generator [77] (events leading

to neutron recoils in the TPCs from the BHWIDE generator [78] were negligible and are thus not

included in this analysis). Two-photon background samples are generated using the AAFH event

generator [79] with the final state set to e+e−e+e−. Both the radiative Bhabha and two-photon

neutron background samples are generated assuming a luminosity of 2.5× 1035 cm−2s−1. Given

47



the linear dependence of collision rates on luminosity, we can scale these rates to any luminosity

as needed. Table 4.2 summarizes the amount of beam time used for each simulated background

component.

4.3 Calibration and event selection

Here we discss the charge calibrations, gain calibrations, and event selections used leading up to

the analyses for both Study A and Study B.

4.3.1 Pixel-level calibration

In both of our DAQ systems we use identical readout software and data processing procedures to

those described in Chapter 3.1.3. We now tune the thresholds to a target value of 2100 e in all but

one of the TPCs and the TOT response is tuned to correspond to a saturation limit—the maximum

TOT recorded in an event—above 40 000 e. Due to operational oversight, the TPC at z = −8.0 m

was tuned to a target threshold of 2750 e instead of 2100 e. The results of the threshold tunings

and TOT scales vary between FE-I4 modules as can be seen in Table 4.3.

TPC
Location

QTOT=0

[e−]
QTOT=13

[e−]
G [e−] Edrift

[
V
cm

]
vd
[ µm

25 ns

] Correction
Template

Threshold
[keVee]

−14 m 2120± 46 42827 783± 45 313 152 f3 8.0
−8.0 m 2773± 40 47989 794± 37 452 216 f3 6.0
−5.6 m 2110± 32 40821 1015± 42 452 216 f1 9.5
6.6 m 2071± 50 46794 1476± 27 452 216 f1 10
14 m 2084± 35 47304 883± 34 452 216 f2 8.0
16 m 2083± 45 43625 863± 84 452 216 f3 10

Table 4.3: TPC calibration results and settings. Columns from left to right describe: (i) TPC
location in Belle II coordinate system, (ii) measured threshold charge, (iii) measured saturation
charge, (iv) calibrated effective double GEM gains, (v) approximate drift field, (vi) approximate
drift speed, (vii) best template model used for correcting energy due to gain drops during back-
ground studies, and (viii) the determined X-ray veto threshold using the procedure outlined in
Chapter 3.3.4. Threshold uncertainties (ii) are the standard deviation of the pixel threshold over
every pixel in the chip. Gain uncertainties (iv) are given by the standard error of the ionization
energy distributions of horizontal alphas in a given TPC. Drift speeds (vi) are calculated using
Magboltz [69]. We note that the TPC at z = −14 m experienced periodic high voltage trips, so its
drift field was lowered to ensure stable operation.

We then calibrate the remainder of the charge scale by sending two hundred injections at several

distinct charge steps and measure the TOT response in each pixel. The mean of the TOT over all

pixels is recorded for each injection and the mean and standard error of each of these 200 pixel-
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averaged TOT values is plotted at each charge step. A bi-cubic spline interpolation of the injection

charge versus mean TOT is used to determine the charge corresponding to TOT codes ranging

between 0 and 13 in steps of 1.

4.3.2 Gain calibration

We use the same general procedure as described in Chapter 3.3.3 where we use the 210Po alpha

sources and calibrate the mean energy of roughly horizontal alpha tracks to a target of 1430 keV.

We never replaced these sources between Phases 2 and 3, so given the 210Po half like of 137 days, we

had muc smaller alpha samples to calibrate gain during for the Phase 3 study. As a result of this, we

only calibrated gain for Study A and use these same calibrations for Study B. The locations of the

Phase 3 TPCs are far enough away from the QCS that we longer had to worry about the presence

of the 1.5 T final focusing magnetic field during our calibration runs. Given the lower statistics

and the fact that alpha ionization trajectories weren’t distorted by the B-field, we select alphas

satisfying |φTPC| < 5◦ and 85◦ < θTPC < 95◦ and expect the ionization energy distributions of these

to be approximately Gaussian distributed. As before, we set our calibrated gain, G, to be the value

that centers the ionization distribution of these selected alphas at 〈Eionization〉 = 1430 keV in each

TPC. The calibrated GEM gains are shown in Table 4.3. We note that effective gain variations

between TPCs result both from inherent GEM gain differences and variation in gas purity, the

latter being expected due to each set of three TPCs receiving gas in series.

During both Study A and Study B, we observe drops in dE/dx at a fixed track length, `, with

increasing luminosity in several TPCs. This effect appears to result from drops in effective gain in

these detectors during beam-collisions. A change in background particle composition alone would

only change the distribution of events within an E versus ` band, or the relative normalization

of the bands, but not the shape of individual bands comprised of a single particle species. Both

the reduced dE/dx for the observed He-recoils and the disappearance for the X-ray bands (which

move below threshold at low gain) support the hypothesis that the effective gain is reduced at the

highest luminosities.

Given that beam-induced background rates increase with luminosity, we speculate that the

observed drop in effective gain is a consequence of reduced gas purity induced by stimulated X-ray

desorption at higher luminosities. Since this is speculation and we do not know the exact cause

of these drops in gain, we correct for them empirically to keep the dE/dx distributions of nuclear

recoils reasonably consistent in a given TPC during the entirety of the background studies. We thus

introduce three simple template models to fit to the distribution of mean nuclear recoil energies

for events with observed ionization energies above 12 keV with 3D lengths (Chapter 3.3.4) between

1.3 mm and 2.6 mm (1.7 mm and 3.0 mm for the TPC at z = +16 m due to its sharper drop in

effective gain) binned by luminosity and choose the model among the three that gives a reduced

χ2 nearest to 1. The template models are
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Figure 4.2: (color online) Left: average energy of identified nuclear recoils—both before and after
the corrections described in Eqs. (4.1) and (4.2)—versus luminosity for recoils satisfying 1.3 mm <
` < 2.6 mm (top) and 1.7 mm < ` < 3.0 mm (bottom), where ` is the length along the principal axis
of the recoil track. Middle and right: reconstructed ionization energy versus length distributions
before and after gain corrections, respectively. The top and bottom rows of plots are associated
with the TPCs at z = +14 m and z = +16 m, respectively.
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f1(L) = a

f2(L) = aL+ b

f3(L) =
1

aL+ b
(4.1)

where L is the measured luminosity and a and b are fit parameters. We then use fj(0)/fj(L); j =

1, 2, or 3, as the scale factor for which to modify the energy. Thus, for all events, we define our

corrected energy due to gain corrections as

Ecorrected(L) =
fj(0)

fj(L)
Eionization, (4.2)

where j corresponds to the template that minimizes |χ2/dof− 1|. Table 4.3 lists which fit template

was used to correct for drops in gain in each TPC and Figure 4.2 shows the effect of these corrections

on the TPCs at z = +14 m and z = +16 m. Unless stated otherwise, when we refer to the energy

of a measured recoil event in this chapter, we are referring to Ecorrected.

4.3.3 Event classification

We use the distribution of gain-corrected energy versus track length to select for nuclear recoil

events to include in our analyses. Like in Phase 2, we use an SVD to identify the principal axis of

each track and take the difference between the highest and lowest values of position along this axis

to be the 3D track length. We once again reject all events that register pixel hits on any of the

four edges of the FE-I4B chip to remove calibration alpha tracks since they span the entire xTPC

extent of the chip.

Figure 4.3 shows the remaining distributions of track energy versus length. Like before, the rel-

atively flat lowest energy band (dE/dx ∼ 0) corresponds to electron recoils from X-ray conversions,

which is the predominant source of background in all TPCs. The remaining two curved dE/dx

bands correspond to, in order of increasing dE/dx: 4He recoils and 12C/16O recoils. The large

region of parameter space between the X-ray and recoil bands contains a relatively small number of

events compared to the three primary dE/dx bands. Simulation suggests that this region contains

a mixture of nuclear recoils and X-rays, but given that there are very few events in this region, we

apply quadratic dE/dx pre-selections that reject most of this region in order to prioritize nuclear

recoil purity. After setting these dE/dx pre-selections, we use a data driven approach to determine

an “X-ray veto threshold” in each TPC for our analysis. The general procedure follows:

1. Start with an X-ray veto threshold of 5 keVee.
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Figure 4.3: (color online) (i): Corrected energy versus 3D track length for simulated nuclear recoil
events and all measured events passing our fiducialization preselection during Study A in the TPC
at zBELLE = +14 m. Events above the red cutoff boundary are identified as nuclear recoils, and
those below are rejected background. (ii): same as (i) but comparing measurements between Study
A (black points) and Study B (gray points). (iii): zoomed in binned view of measured recoils in
(i). (iv): binned energy distribution of all events within the orange shaded region shown in (iii).
The energy distribution of events below the X-ray veto is fit with a half-Gaussian profile Fbin(x)
(described in text and shown as the magenta curve here) to estimate the leakage of X-ray events
above this threshold.

2. Split the region between ` = 850 µm and ` = 4000 µm into bins of width 50 µm and in each

of these length bins:

(a) Plot a histogram of the energy distribution of all events. The gray bars in ?? (iv) show

this energy distribution for all events within the length bin shaded in orange in ?? (iii).

The distribution of events below the recoil cutoff boundary is asymmetric and has a

long, approximately Gaussian, high-energy tail.

(b) Estimate the number of x-ray events as a function of energy for a given length bin using

a Gaussian profile of the form

Fbin(Ecorrected) = Âbin exp
(
−B̂binE

2
corrected

)
, (4.3)

fit to the higher-energy half of the observed energy distribution below the recoil cutoff

boundary. Fit parameters Âbin and B̂bin are determined by performing a χ2 minimiza-

tion of Fbin evaluated between the energy bin with the most X-ray events and bin

corresponding to the recoil cutoff boundary in the given length bin.

(c) Estimate the leakage above the recoil cutoff boundary using

Leakagebin =

∫ ∞
maxE(Eveto,EdE/dx,bin)

Fbin(x)dx, (4.4)
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where Eveto and EdE/dx,bin are the energies of the proposed X-ray veto threshold and

the dE/dx pre-selection, respectively.

(d) Divide the estimated leakage above the recoil cutoff boundary by the total number

of events above maxE
(
Eveto, EdE/dx,bin

)
to get the estimated leakage fraction above

maxE
(
Eveto, EdE/dx,bin

)
. Subtracting this leakage fraction from 1 gives the estimated

recoil purity above the recoil cutoff boundary.

3. Adjust the energy of this flat X-ray veto threshold as needed until the estimated recoil purity

in each length bin is greater than 99%.

We apply the above procedure to each TPC twice—once for Study A data and once for Study

B data—and note that the determined thresholds for a given TPC are similar between these two

studies, so we assign the larger of the two thresholds to each TPC with the final choice listed in

column (viii) of Table 4.3. These thresholds are defined with respect to Ecorrected
1. Despite small

differences in dE/dx predictions between data and simulation, applying these same selections to

simulated samples (Figure 4.4) suggests recoil purities of greater than 99% in all TPCs with nuclear

recoil signal efficiencies greater than 75% in all TPCs. The predicted nuclear recoil signal purities
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Figure 4.4: Simulated ROC curves showing nuclear recoil signal purity versus efficiency as a function
of X-ray veto threshold energy for Study A. The boxes show the predicted nuclear recoil purity
and efficiencies corresponding to the X-ray veto threshsold decided for each TPC. Our procedure
prioritizes selecting a veto with higher nuclear recoil purities than the X-ray veto threshold point
that maximizes the area under the ROC curve.

and efficiencies demonstrate that these TPCs are capable of measuring high purity samples of fast

1We increase the X-ray veto threshold in the TPC located at z = +16 m by an additional 60% to ensure that we
are above the regime where nuclear recoil events drop below the FE-I4B detection threshold due to the drop in gain
during collisions. The X-ray veto thresholds reported in Table 4.3 for this TPC are after the additional 60% increase.
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neutrons down to O(10 keV) at effective double GEM gains of O(1000).

4.3.4 Merging accelerator and TPC data

As with our Phase 2 data processing, we extract one second summary EPICS PVs of key accelerator

quantities from the PV archiver and merge them with calibrated TPC data by matching integer

timestamps of TPC data with integer timestamps of all accelerator PVs. When there are multiple

TPC events within a one second window, we duplicate the accelerator data for the given one second

window, making our models of nuclear recoil rates versus accelerator parameters rate weighted.

4.4 Improved modeling of beam-induced backgrounds

LER study HER study Luminosity study

Figure 4.5: (color online) SuperKEKB machine parameters versus time. Beam currents, vertical
beam sizes σy,LER,HER, numbers of bunches nb,LER,HER, and luminosity, L, are shown over the
course of all three study periods during Study A

In contrast to the Phase 2 background studies, Phase 3 Studies A and B each included an LER

study portion, an HER study portion, and a luminosity study portion. Within each of these study

periods background data was recorded during rapid continuous injection fills as well as storage

(“decay”) fills. Figure 4.5 shows how several accelerator parameters vary over the course of the

three separate study periods conducted during Study A: we see that numbers of bunches (nb) were

varied in three steps during each of the LER and HER study periods. Rather than explicitly

varying beamsize with an emittance control knob, during the Phase 3 background studies we

instead use the change in number of bunches (fill pattern) as our probe for Touschek backgrounds.

During the luminosity study period, the number of bunches were kept constant with 783 bunches

in each ring, while luminosity was varied to control for the measurement of luminosity dependent
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backgrounds. When analyzing data, we only consider beam storage fills in our analysis, as there

are more systematic differences between the beam optics settings used during during continuous

injection fills than those during decay fills.

In Chapter 4.2.2 we describe how we deal with ring sectional pressure weighting when simu-

lating beam-gas backgrounds. As a result, we will treat pressure differently in our modeling of

beam-gas backgrounds than we did in Phase 2. Additionally, despite us not explicitly varying

σy with an emittance control knob during Phase 3, Figure 4.5 shows that during the Luminosity

background study σy,LER is considerably larger than during the single-beam LER study, due to

a beam blowup effect during collisions. This beam blowup effect will also affect how we model

Touschek backgrounds throughout these Studies. For these reasons we will spend some time mo-

tivating our single-beam background models, as these models are a prerequisite to disentangling

collision-induced luminosity neutron background production.

4.4.1 Beam-gas backgrounds

As before, we employ a physically motivated parametrization of nuclear recoil rates, R, that encap-

sulates the sensitivity of R to beam-gas and Touschek background components. To good approxi-

mation, the rate of beam-gas scattering events in a given ring is proportional to IPZ2, where I is

the beam current, P is pressure at a given position along the ring, and Z2 is the square of the atomic

number of the gas constituent that the beam particles interact with. No new RGAs were installed

between Phases 2 and 3, so we still do not explicitly measure Z. During phase 2, we ignored the

fact that P is composed of a base component, P0 due to the residual gases remaining in the beam

pipe without the presence of beams, and a dynamic component P1, which is proportional to I and

dP/dI [80]. Our Phase 3 simulations now separately simulate base and dynamic contributions to

Coulomb and Bremsstrahlung beam-gas backgrounds, so we outline here how we model these base

and dynamic pressure components in measurement.

In experiment, we treat pressure as follows: we first note that the pressure within the beam

pipe, P , contains both a base component, P0, and a current-dependent dynamic component, P1(I):

P = P0 +
dP

dI
· I

= P0 + P1(I). (4.5)

Previous machine simulation has shown that the dynamic pressure component measured by the

CCGs, P1,meas(I) is about a factor of 3 lower than the dynamic pressure within the beam pipe, so
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P1(I) = 3P1,meas(I),

P0 = P0,meas, (4.6)

⇒ P = P0,meas + 3P1,meas(I).

The measured CCG pressure can be broken down into base and dynamic components analogously

to the beam pipe pressure in Eq. (4.5) so we can rewrite Eq. (4.6) as

P = P0,meas + 3(Pmeas − P0,meas)

= 3Pmeas − 2P0,meas. (4.7)

Substituting Eq. (4.7) into Eq. (3.4) gives

Rbg = B · I(3Pmeas − 2P0,meas).

Noting that the base pressure is a constant, we define model parameters B0 ≡ 3B and B1 ≡
2BP0,meas leaving us with our beam gas background parametrization:

Rbg,i = B0i · IiPmeas,i −B1i · Ii i = LER, HER. (4.8)

Cast in the form of Eq. (4.8), B0 and B1 are positive constants that are determined empirically

and together encode the sensitivity of nuclear recoil rates to beam gas backgrounds.

4.4.2 Touschek backgrounds

The main differences between modeling Touschek backgrounds in Phase 2 versus Phase 3 is during

Phase 3, we had reliable measurements of the longitudinal bunch length, σz, and there were also

variations in σy in the LER that can be seen between the LER study period and the luminosity

study period in Figure 4.5. This beam blowup effect that occurs during collisions can have a

strong effect on observed rates, especially in the FWD tunnel where LER Touschek backgrounds

from upstream collimators are particularly large. Due to this sensitivity to Touschek backgrounds

from upstream collimators, we modify the vertical beam size dependence in our LER Touschek

model from σy → σαLER
y , where the exponent αLER is determined empirically and corrects for

discrepancies between Touschek predictions derived from single-beam LER studies and those during

the luminosity study period. The assumption underlying this correction is that beam size differences
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can cause larger variations in Touschek backgrounds for detectors that are sensitive to backgrounds

from collimators than those that are not. With these changes, we update Equation 3.7 and write

our Phase 3 Touschek parametrization as

RT,i = Ti ·
I2
i

σαiyi σzinbi
i = LER, HER, (4.9)

where we have used Ib = I/nb to express the bunch current in terms of beam current I and

number of bunches nb. Restricting our analyses to beam storage fills, we don’t have to worry about

additional injection background components, so beam-gas and Touschek contributions will be the

dominant single-beam background sources. Following the lead of Chapter 3.4.2, we combine Eqs.

(4.8) and (4.9) and write

RSB,i = Rbg,i +RT,i (4.10)

= B0i · IiPmeas,i −B1i · Ii + Ti ·
I2
i

σαiyi σzinbi
i = LER, HER,

as our Phase 3 combined single-beam background parametrization. Fitting measured nuclear recoil

data with this parametrization provides empirical measurements of B0i, B1i, and Ti, which can

then be compared with simulation and used to extrapolate expected single-beam-induced TPC

event rates to different accelerator conditions.

4.4.3 Luminosity backgrounds

We model luminosity backgrounds as the backgrounds that remain during collisions after sub-

tracting out LER and HER single-beam backgrounds. Total nuclear recoil rates, then, are given

by

R = RSB,LER +RSB,HER +RL, (4.11)

where R is the total nuclear recoil rate and RL is the luminosity component of nuclear recoil rates.

Thus, during the luminosity study period, we measure the luminosity background rate as

RL = R−

 ∑
i=LER,HER

B0iIiPmeas,i −B1iIi + Ti
I2
i

σαiyi σzinbi

 = mLL, (4.12)
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where L is the instantaneous luminosity, and B0i, B1i and Ti represent the sensitivity coefficients

measured in experiment from the single-beam LER and HER background studies, respectively.

RL is expected to be directly proportional to L—which we verify in Chapter 8.5—with luminosity

background sensitivity parameter mL.

4.5 Analysis and results

Here we analyze the rates, energy spectra, angular distributions, and directional distributions of

recoils measured during Study A. We compare these measurements to simulation and use these com-

parisons to extrapolate simulated neutron fluxes to our peak target luminosity of 6.3× 1035 cm−2s−1.

We note that since we do not have TPC simulation for Study B beam optics, we only use Study

B measurement to set a systematic on luminosity backgrounds, as luminosity backgrounds are

dependent only on collision rate.

4.5.1 Nuclear recoil background composition and rates

Eqs. (4.10) and (4.12) provide a framework for disentangling measured backgrounds into their

individual contributions. Here we use these equations to determine the observed nuclear recoil

background composition and compare with simulation.

Single-beam background composition

We start by applying Eq. (4.10) to single-beam LER data to measure αLER. To do this, we fit LER

data recorded during Study A in each of the three FWD TPCs using values of αLER ranging from

0.5 to 4.5 in steps of 0.1 and record the mean reduced χ2 of these fits between these three TPCs.

We find a minimum reduced χ2 of 1.44 at αLER = 2.4 with 1.8 ≤ αLER ≤ 3.0 representing the

95% confidence interval for the value of αLER that minimizes the reduced χ2 of single-beam LER

background fits in the FWD TPCs. In Study B, we find essentially no αLER dependence on the

reduced χ2 fits to single-beam LER backgrounds in the FWD TPCs, but we still set αLER = 2.4

since αLER is intended to correct for the effects of LER beam size blow up during collisions. Given

that there are no appreciable HER beam size changes during collisions in both Study A and Study

B, we set αHER = 1.

Using αLER = 2.4 and αHER = 1, we next apply Eq. (4.10) to 30 second averages of TPC nuclear

recoil counts recorded during single-beam LER and HER decay fills respectively. Figure 4.6 shows a

comparison between measured recoil counts binned into 30 s intervals during the LER study period

of Study A, and the corresponding LER beam-gas and LER Touschek fit predictions from Eqs.

(4.8) and (4.9), respectively in the TPC located at zBELLE = +14 m. The fit model appears to

reasonably fit single-beam LER backgrounds, producing a reduced χ2 of 1.3. Though not explicitly
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Figure 4.6: (color online) LER background composition fits versus time in the TPC located at
zBELLE = +14 m during Study A with αLER = 2.4. Top: black circles correspond to the measured
recoil count, gray diamonds, and open circles represent the predicted recoil counts from LER beam
gas and LER beam gas + LER Touschek backgrounds, respectively. Bottom: residual distribution
defined as the difference between the measured recoil count and the fit-predicted recoil count using
Eq. (4.10).

Study Ring
(β∗x, β

∗
y)

[mm,mm]

I
[mA]

P
[nPa]

(σy, σz)
[µm,mm]

nb
L

[1034cm−2s−1]

A
LER (80,1) 510 30 (60, 5.9) 783

1.1
HER (60,1) 510 14 (35, 6.4) 783

B
LER (80,1) 730 35 (65, 5.8) 1174

2.5
HER (60,1) 650 14 (35, 6.2) 1174

Table 4.4: Typical machine parameters during the luminosity background studies. All comparisons
between data and simulation in this section assume these conditions.
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Figure 4.7: (color online) Fits to RL versus luminosity during decay fills in each TPC. The solid
blue and orange lines represent mL for Studies A and B, respectively. The shaded regions represent
statistical 95% confidence intervals on mL for each study. Fits to mL do not include contributions
from the translucent points satisfying L > 1.5× 1034 cm−2s−1 during Study B.
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shown, we note that fits to LER and HER single-beam backgrounds yield reduced χ2’s ranging

between 0.8 and 1.8 in all TPCs.

Luminosity background composition

After determining B0i, B1i, Ti, and αi; i = LER, HER, we use Eq. (4.12) to determine the

luminosity sensitivity parameter mL in each TPC. Figure 4.7 shows linear fits to RL versus L in

each of the six TPCs during the decay fills of the luminosity study for both Study A and Study B.

Here RL is the difference between the total number of recoils measured during each 30 second time

bin during the luminosity study decay fills and the predicted number of recoils due to single-beam

backgrounds during this same period. We obtain reasonable fits to RL vs L in all TPCs during

Study A. During Study B, we observe a drop in RL at the highest luminosities (translucent points

in Figure 4.7) in all TPCs. We speculate that this drop in RL above 1.5× 1034 cm−2s−1 is related to

the drop in effective gain at high luminosity described in Chapter 3.3.3. Indeed, a drop in effective

gain would lower the average energy of events at high luminosity, resulting in fewer nuclear recoils

above both the threshold of the chip and within our analysis selections. Furthermore, the two

TPCs shown in Figure 4.7 with the least significant drops in RL above 1.5× 1034 cm−2s−1 during

Study B are z = −5.6 m and z = 6.6 m, which, from Eqs. (4.1) and (4.2), and Table 4.3, are the

two TPCs that did not require gain corrections. Since it is difficult to correct for all effects related

to this drop in gain, we opt to exclude the translucent points when fitting for mL.

Observed versus simulated background compositions

We next extrapolate the nuclear recoil counts for each background source observed in each TPC

to machine conditions that are consistent with the decay fill periods during the luminosity study

in Studies A and B. The top and bottom plots of Figure 4.8 show the extrapolated fractional

background contributions at the conditions listed in Table 4.4 for the Study A and Study B lu-

minosity study periods, respectively. Comparing the extrapolations at the conditions of Study B

to the conditions of Study A, we observe that the luminosity background fraction increases in all

TPCs except for the TPC at zBELLE = 16 m, where increases in LER Touschek backgrounds in

Study B overshadow increases in luminosity-induced nuclear recoils at higher luminosity. Due to

differences in beam optics settings that can have large effects on beam-induced background gener-

ation, directly comparing single-beam backgrounds between the two background study days is not

always meaningful. For a given beam optics configuration, however, we can compare observed and

predicted single-beam background rates. Comparing the unfilled data points in the top and bottom

plots in Figure 4.9, we find that for the Study A beam optics configuration, observed single-beam

recoil rates in the BWD tunnel are consistent with prediction, while simulation under-predicts

single-beam recoil rates in the FWD tunnel.

Table 4.5 shows data/MC comparisons of nuclear recoil rates for all background sources of
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Figure 4.8: (color online) Background compositions determined from fits to storage fills extrapolated
to the machine parameters shown in Table 4.4 for Study A (top) and Study B (bottom).
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Figure 4.9: Comparison of single beam and total (single beam + luminosity) nuclear recoil rates
extrapolated to the machine conditions listed in Table 4.4 for observed recoils during the luminosity
decay fill periods of Study A (top) and simulated recoils (bottom).
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TPC
z[m]

LER
Beam Gas

HER
Beam Gas

LER
Touschek

HER
Touschek

LStudy A

[
+(sys.)
−(sys.) ± (stat.)]

LStudy B

[
+(sys.)
−(sys.) ± (stat.)]

Total
Study A

-14 1.82± 5.2 0 –– 0.90± 0.5 1.27+0.03
−0.13 ± 0.25 1.02+0.00

−0.43 ± 0.18 1.24± 0.22

-8.0 9.52± 17 39.3± 65. –– 0.57± 0.6 0.07+0.00
−0.00 ± 0.01 0.06+0.00

−0.02 ± 0.00 0.07± 0.01

-5.6 22.9± 31 16.0± 24. –– 0.56± 0.5 0.14+0.00
−0.03 ± 0.03 0.13+0.00

−0.05 ± 0.02 0.14± 0.03

+6.6 186.± 80 0 0.98± 0.4 4.61± 8.0 0.14+0.13
−0.15 ± 0.06 0.10+0.00

−0.10 ± 0.04 0.44± 0.11

+14 471.± 240 47.8± 140 1.92± 0.5 –– (7+3
−5 ± 2)× 10−3 (3+0.6

−3 ± 1)× 10−3 0.02± 0.00

+16 480.± 260 0 1.61± 0.5 –– (2+3
−2 ± 1)× 10−3 (4+0.0

−4 ± 1)× 10−3 0.01± 0.00

Table 4.5: Data/MC ratios scaled to the conditions shown in Table 4.4. Entries marked as 0
correspond to instances where Eq. (4.10) predicts no nuclear recoils. Entries marked as “––” indicate
that no MC recoils were produced for the listed background component. Beam gas, Touschek, and
total data/MC ratios were only computed for Study A. LStudy A and LStudy B include asymmetric
systematic uncertainties accounting for potential misclassifications of single-beam backgrounds.

interest. Since our simulated samples are generated assuming beam optics settings consistent with

Study A, we only include this study day for single-beam data/MC comparisons. We find very good

agreement between data and MC Touschek backgrounds using (αLER, αHER) = (2.4, 1) indicating

that Touschek production mechanisms are modeled well in simulation. Furthermore, LER Touschek

backgrounds appear to be the dominant single-beam background source in the FWD tunnel, which

is consistent with the predictions of simulation. Beam gas background measurements, on the other

hand, are underpredicted by simulation. We note that simulated statistics are in general low for

beam gas backgrounds leading to large uncertainties in beam gas data/MC ratios.

The data/MC ratios for luminosity backgrounds include an additional systematic uncertainty

meant to account for potential misclassification of single-beam backgrounds. These uncertainties

on mL are computed assuming 1σ uncertainty contributions to RL from B0i, B1i, and Ti, that are

truncated to ensure both single-beam and luminosity background rates do not drop below 0. In the

absence of this additional systematic uncertainty, we find agreement of luminosity data/MC ratios

between Study A and Study B within 1.4σ in all TPCs. Simulation, on the other hand, predicts

significantly higher luminosity background rates than measurement in all TPCs except for the TPC

at zBELLE = −14 m, as can be seen by comparing the filled data points in the top and bottom plots

of Figure 4.9. The fact that the difference in observed luminosity recoil rates between Study A

and Study B is much smaller than the difference between observed and simulated luminosity recoil

rates may point to the known lack of materials such as magnet mounts, certain types of shielding,

and other support structures, present in the simulated geometry description of the two accelerator

tunnels, which the collaboration is currently working to improve.
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Figure 4.10: (color online) Comparison of observed (black points) and predicted (blue bars) recoil
energy spectra in each TPC. The data shown are from the beam decay luminosity study periods
from Study A. The lowest energy bin only includes events above the X-ray veto threshold listed in
Table 4.3 in both measurement and simulation. Both distributions are normalized to an integral
of unity. The title of each plot indicates the z location of its corresponding TPC.

4.5.2 Energy spectra

We next compare the energy spectra of measured nuclear recoils with their simulated counterparts.

To perform this comparison, we first weight simulated recoil rates to provide a fair representation

of the measured background composition during Study A. We apply the following steps:

1. Scale simulated recoils to their “one second” (1 s) equivalent rates. The simulated beam

time used to generate MC samples varies considerably between background sources, so we

apply a scaling factor of 1/tgen where tgen is the simulated beam time, in seconds, shown

in Table 4.2. Simulated luminosity recoils are further scaled down to the typical luminosity

listed in Table 4.4.

2. Scale simulated rates of a given background type by their corresponding data/MC factor:

due to differences in data/MC ratios with respect to background type, each simulated recoil

is tagged with the associated background source from which it was generated (LER/HER

beam gas, LER/HER Touschek, or luminosity). Data/MC ratios are computed for recoils

satisfying the X-ray veto threshold listed in Table 4.3, and assuming machine parameters

shown in Table 4.4.

3. Bin the samples by Ecorrected.
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4. Normalize to a unit integral. Since we’ve already compared measured and simulated recoil

rates (Table 4.5, Figure 4.9), we aim to compare the shapes of the measured and simulated

nuclear recoil energy spectra.

Figure 4.10 shows the resulting histograms of measured and simulated recoil spectra. We use

steps (1-3) above to assign weights to each simulated recoil.

We fill the jth bin of the simulated energy spectrum with the normalized sum of weights in the

given bin,

Sj =

∑
iwji
N

, (4.13)

where wji is the weight of the ith event in bin j, and N ≡
∑

j

∑
iwji is the sum of all weights in

the energy spectrum. We compute the uncertainty in the jth bin using the following procedure:

1. Compute the statistical uncertainty contribution, Wk, from background type k:

Wk = wk
√
Nk, (4.14)

where wk is the weight associated with background type k and Nk is the number of events in

the bin with background type k.

2. Compute the normalized uncertainty of the jth bin,

σj =

√∑
kW

2
k

N
. (4.15)

The contents of the bins in the measured energy spectrum are unweighted. Due to measurements

occurring over a substantially longer time frame than the equivalent beam time for all simulated

recoil backgrounds, we include an additional “uncertainty floor” component where we assign the

quadrature sum of the weight associated with each background type,
√∑

k w
2
k, as the uncertainty

of each empty bin.

With the exception of the TPC furthest away from Belle II in the BWD tunnel (zBELLE =

−14 m), we find that both the observed and simulated recoil spectra are approximately exponen-

tially decaying with slopes in reasonable agreement, especially at energies below 200 keV, which

constitute between roughly 80% and 90% of recoils measured during this period in these five TPCs.

The agreement between measured and predicted energy spectra in these five TPCs suggests that

the material interactions that lead to neutron production are modeled well in simulation out to

16 m from Belle II in the FWD tunnel and 8.0 m in the BWD tunnel.
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4.5.3 Angular and directional analysis

Comparing the distributions of measured and simulated nuclear recoil angles θTPC and φTPC pro-

vides useful insight toward our understanding of cavern neutron production points in the absence

of a full kinematic reconstruction of the distribution of neutrons incident upon a TPC. Though

reconstructing incident neutron energies and angular distributions would be illuminating, doing

so in a realistic detector with non-ideal performance is challenging and beyond the scope of this

work. Agreement between measured and simulated recoil angles θTPC and φTPC, however, should

only hold if there is agreement between the angular distributions of neutrons incident upon the

TPCs, so we perform such comparisons as an indirect test of our modeling of angular distributions

of neutrons in the two tunnels.

Axial directional performance: angular resolution

We use the principal axis of the 3D reconstructed ionization distribution determined using an SVD

to determine the axial direction of a track. This “SVD fitter” performs well for long, higher energy

tracks, where the principal axis is relatively unambiguous, but for sufficiently short tracks, the

reconstructed 3D track is shaped like a round bowl, making the principal axis assignment of a

track ambiguous. We quantify the axial angular resolution of the TPCs by computing the angular

mismeasurement (difference in angle) between the axial direction of reconstructed track using the

SVD fitter and the truth MC-simulated axial direction of the recoil.
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Figure 4.11: Mean (data points) and standard error (vertical error bars) of angular mismeasurement
between SVD fits to the principal axis of the reconstructed simulated track and the truth MC-
simulated direction of the recoil split up between 4He recoils (filled points) and 12C/16O recoils
(unfilled points). The angular resolution of 4He recoils is considerably better than 12C and 16O
recoils.

Figure 4.11 shows histograms of angular resolution versus Ereco for truth-matched 4He and
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12C/16O recoils. We find that the angular resolution of simulated 4He recoils is considerably better

than the angular resolution of 12C and 16O recoils. This finding is consistent with the fact that 12C

and 16O recoils tend to produce lower energy and shorter tracks than He recoils, thus increasing the

ambiguity of the identified principal axis in a measured track. During Phase 1, angular resolution

was found to be within 20◦ for He recoils down to 100 keVee [48], whereas here we find angular

resolution to be within 20◦ for He recoils down to 60 keVee. We further find angular resolutions

of 13.0◦ ± 0.4◦ in the 100 keVee bin, indicating substantially improved angular resolution over the

Phase 1 results. In the Phase 1 analyses, the principal axis of each recoil track was identified

using a χ2 minimization technique as opposed to the SVD used here. While we have not explicitly

compared angular resolution performance of these two track-reconstruction techniques, we suspect

that use of the SVD primarily contributes to the observed improvement in angular resolution.

Vector directionality

The principal axis of a recoil track assigns the axial direction of the track, however without a vector

direction assigned to that principal axis, measurements of φTPC and θTPC are ambiguous. Here we

outline a procedure for vector head-tail assignment to recoil tracks and assess the performance of

this procedure in assigning vector directions to tracks.

Nuclear recoils measured in a TPC are said to be “beyond the Bragg Peak” [81], meaning that

the stopping power of an event falls sharply at the stopping end of the track, leading to an expected

asymmetric distribution of charge along the principal axis of the track. Previous work with these

TPCs during Phase 1 [47; 48] has shown that this asymmetry is much more clear for 4He recoils

than for 12C and 16O recoils, so we only attempt to assign vector directions to 4He recoil tracks.

In particular, we restrict all remaining angular analyses to 4He recoils with Ereco > 40 keVee in

simulation and Ecorrected > 40 keVee in measurement, as simulation predicts average axial angular

resolutions to be within 8◦ for events satisfying this criteria.

Given that the He and C/O recoil bands differ in dE/dx and that these dE/dx bands appear to

vary quadratically at energies below 100 keV (Figure 4.3), we make selections using E/`2 versus `

distributions for recoils above 40 keVee, so that we can define a flat E/`2 versus ` selection boundary

for He recoils. Figures 4.12 and 4.13 show the simulated and measured distribution of such recoils

plotted in this space. From Figure 4.12, we see that there is clear separation between truth He

and truth C/O recoils, and thus define the events within the red rectangular boundary to be He

recoils. Looking at Figure 4.13, we find that the boundaries between C/O recoils and He recoils

appear even more distinct, but since dE/dx differ between measurement and simulation in some

TPCs, we define the red boxes, within which we select He recoils, by eye. Figures 4.14 and 4.15

show the events identified as He and C/O recoils in E versus ` space.

Charge integration effects in these TPCs are known to bias the measured charge asymmetry

in a recoil away from its true ionization distribution when the recoil track is inclined with respect
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Figure 4.12: E/`2 versus ` with truth simulated He recoils in blue and truth simulated C/O recoils
in orange. Events within the red rectangle in the lower right hand corner of each plot are selected
as He recoils.

Figure 4.13: Measured E/`2 versus `. Events within the red rectangle in the lower right hand
corner of each plot are selected as He recoils.
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Figure 4.14: Selections from Figure 4.12 plotted as an E versus ` distribution.

Figure 4.15: Selections from Figure 4.13 plotted as an E versus ` distribution.
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Figure 4.16: (color online) Fractional charge of 4He recoils (Ereco > 40 keVee) on the half of the
track with larger zTPC (“Upper HCF”) in simulation (left) and measurement (right) as a function of
the inclination of the track. In both plots we find that the upper HCF tends to decrease sharply as
tracks become more inclined in z. In simulation we observe strong separation in Upper HCF between
upward pointing tracks (cos(θTPC, truth) > 0) and downward pointing tracks (cos(θTPC, truth) < 0).
The black and red fit lines in the left and right plots are used as boundaries to assign vector
directions to the samples of measured and simulated nuclear recoils, respectively.
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to the readout plane [82]. To investigate this bias, we split each measured and simulated track

in half along the midpoint of its principal axis and count up the charge on either end. We make

an a priori choice to initially define the head of the track to be the side of the track with larger

average zTPC (Figure 2.4). Figure 4.16 shows the fraction of charge on the half of each track

containing the vector head (henceforth called Upper Head Charge Fraction, or Upper HCF) in

all six TPCs as a function of axial track inclination2. We observe a steep drop in Upper HCF

with increasing axial inclination in both measurement and simulation. Furthermore, two distinct

Upper HCF bands arise in measured and simulated samples that are especially apparent in less

inclined tracks. Simulation suggests that the band with larger (smaller) Upper HCF corresponds

primarily to downward (upward) facing tracks, where downward and upward MC tracks satisfy

cos(θTPC, truth) < 0 and cos(θTPC, truth) > 0, respectively. We use this separation between upward

and downward facing tracks to implement our final vector head-tail assignments. The separation

between these two bands appears to be stronger in measurement than in simulation, so we apply a

data-driven fit boundary to implement our head-tail assignments in measurement.

The black and red fit boundaries shown for simulation and measurement, respectively in Fig-

ure 4.16 are determined by fitting quadratic polynomials, p2, MC(cos(θTPC)) and p2, data(cos(θTPC))

to the distribution of Upper HCF vs cos(θTPC) of all 4He recoils above 40 keVee. In the limit of a

perfectly flat track, we assume no charge integration bias in Upper HCF, so we force p2, MC(0) =

p2, data(0) = 0.5. Using the separation between truth MC-simulated upward and downward fac-

ing tracks on either side of p2, MC(cos(θTPC)), we form a vector direction assignment hypothe-

sis that states that recoils with Upper HCF > p2, MC, data(cos(θTPC)) are downward facing, or

equivalently, recoils with correct vector assignment have head charge fractions (HCF) less than

p2, MC, data(cos(θTPC)). We can thus perform our final head-tail assignments by “flipping” the

vector direction (switching the vector head and tail position) of all tracks with Upper HCF >

p2, MC, data(cos(θTPC)) to make them downward facing, thereby satisfying HCF < p2, MC, data(cos(θTPC)).

Figure 4.17 shows the percentage of correctly assigned vector directions of simulated tracks verses

the assigned axial angle projections, φAxial,TPC and | cos(θTPC)|, and reconstructed ionization energy

Ereco. We find our assignment hypothesis of HCF < p2, MC(cos(θTPC)) (filled points in Figure 4.17)

leads to a significant performance improvement in vector direction assignment over the base assign-

ment hypothesis of HCF < 0.5 (unfilled points in Figure 4.17) which would be expected to hold in

the absence of the observed charge asymmetry bias with track inclination.

After assigning vector directions to all tracks, we then compute new vector angles θ′TPC and

φ′TPC, which are the angles of the track vector after final head-tail assignments. We shift the φ′TPC

domain to range from 0 to 360 degrees so that 180◦ is the average direction expected for recoils

caused by neutrons originating from the beam pipe. Moving forward we drop the ′ designation of

both of these recoil angles. Over our entire simulated sample of 4He recoils in all six TPCs satisfying

2With the aforementioned initial head assignment, 0 ≤ cos(θTPC) ≤ 1 so we can call cos(θTPC) the axial track
inclination.
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Figure 4.17: From left to right: percentage of simulated 4He recoil tracks (Ereco > 40 keVee) with
assigned vector directions that match the truth MC-simulated direction of the recoil as functions
of axial angle projections φAxial, TPC and | cos(θTPC)|, and reconstructed ionization energy, Ereco,
respectively. The filled [unfilled] points show the result using the assignment hypothesis of HCF <
p2, MC(cos(θTPC)) [HCF < 0.5].

Ereco > 40 keVee we find ∼ 86% of recoils satisfying HCF < p2, MC(cos(θTPC)) have vector head

assignments consistent with the true simulated direction of the recoil. If we apply an additional

90◦ < φTPC < 270◦ restriction to only include recoil events with origins tending toward the beam

pipe, then our percentage of correctly assigned vector directions increases to ∼ 91%.

Though we estimated our angular reconstruction performance using simulation, we argue that

these estimates are reliable for measurement as well. Refs. [47; 48] show consistency in axial an-

gular resolution between measurement and simulation, finding that the angular mismeasurement

between “half-tracks”, that is, tracks split in half along their principal axis, agrees to within 6◦

between observed and simulated samples over all energies. Additionally, Ref. [48] shows consis-

tency between the detected and simulated charge of recoil tracks as a function of the length along

their principal axis (dQ/dx), indicating that the input quantities used to determine vector direc-

tional assignment are accurately simulated. Similarly, we find agreement in the shapes of dE/dx

distributions between measured and simulated recoils (Figure 4.3(i)) which supports that vector di-

rection assignment is modeled accurately in simulation. Finally, as we’ll see shortly, the agreement

between observed and predicted angular distributions provides further evidence that our angular

reconstruction performance is reliable for measured recoil tracks.
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Figure 4.18: (color online) Binned φTPC versus cos(θTPC) distribution of measured 4He recoils
(Ecorrected > 40 keVee) after final head-tail assignment in the TPC located at zBELLE = −8.0 m.
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Figure 4.19: (color online) Comparison of φTPC between measurement (black points) and simulated
luminosity background nuclear recoils (blue bars) for events satisfying Eionization > 40 keVee during
the luminosity decay fills of Study A. Histograms are constructed after applying final directional
head-tail assignments.
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Figure 4.20: (color online) Comparison of cos(θTPC) between measurement (black points) and sim-
ulated luminosity background nuclear recoils (blue bars) for events satisfying Eionization > 40 keVee

and 90◦ < φTPC < 270◦ during the luminosity decay fills of Study A. Histograms are constructed
after applying final directional head-tail assignments.
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Data versus MC comparisons of φTPC and θTPC

Figure 4.18 shows a 2D histogram of cos(θTPC) and φTPC for measured 4He recoils after vector

head-tail assignment satisfying Ecorrected > 40 keVee from the decay fills of the Study A luminosity

study period in the TPC located at zBELLE = −8.0 m. We observe that this distribution has strong

peaking along 90◦ < φTPC < 270◦, consistent with the expectation that the majority of recoil events

point back to the beam pipe. The shape of the cos(θTPC) distributions for these events coming from

the beam pipe seems to also indicate that the majority of recoils point back to a cone along the

beam pipe centered directly within the straight line of sight between this TPC and the beam pipe,

which is qualitatively consistent with the radiative Bhabha neutron hotspot location predicted by

simulation (Figure 4.1). With the vector directional assignment performance we’ve established, we

can now indirectly test these claims by comparing φTPC and cos(θTPC) between measurement and

simulation.

Figures 4.19 and 4.20 show the resulting simulated φTPC and cos(θTPC) distributions plotted

with measurement collected during the decay fills of the Study A luminosity study period. The

histograms are normalized to an integral of unity and we report uncertainties in the recoil counts

for both measurement and simulation. We also assign an uncertainty of one event (before normal-

ization) in each empty bin. The cos(θTPC) distributions include an additional 90◦ < φTPC < 270◦

restriction to remove events less likely to originate near the beam pipe, as neutrons originating

elsewhere are not expected to be modeled well in simulation. Restricting our angular analysis to
4He recoils above 40 keVee reduces the sample size of nuclear recoils substantially compared to the

samples used for the energy spectra in Chapter 4.5.2. To work around this limitation, we use only

the luminosity background for the simulation data in Figures 4.19 and 4.20, as only the shape of

the luminosity background angular distributions are well defined in MC after selecting directional

recoils. We expect this to work well for the BWD TPCs, where luminosity background dominates,

but not necessarily for the FWD TPCs.

We perform χ2 hypothesis tests [83] comparing the normalized measured and simulated φTPC

and cos(θTPC) distributions shown in Figures 4.19 and 4.20. In particular, we test the null hypoth-

esis that the simulated luminosity background angular distribution explains our observed angular

distributions. We test this hypothesis separately for φ and cos(θ) and we reject the null hypothesis

if the p-value associated with the χ2 test statistic is less than 0.05. In Table 4.6, pφ, and pcos(θ),

are the p-values associated with χ2 tests for the φTPC and cos(θTPC) distributions, respectively.

The results of these χ2 tests suggest that at the current low level of statistics, the luminosity

background alone can explain the observed distributions of recoils resulting from neutrons incident

from the beam pipe. This is as expected for the BWD TPCs, where these backgrounds dominate.

In the FWD TPCs, other background components are sizable, so we expect the inclusion of other

backgrounds will be required to model angular distributions with larger statistics.
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TPC pφ pcos θ

z = −14 m 0.25 0.95
z = −8.0 m 0.29 0.37
z = −5.6 m 0.64 0.37

z = +6.6 m 0.26 0.36
z = +14 m 0.05 0.38
z = +16 m 0.48 0.11

Table 4.6: Summary of p-values resulting from the χ2 hypothesis tests.

TPC
Luminosity
data/MC

Scaled TPC 1 MeV
Equivalent Flux
[108/cm2/year]

Raw EKLM
Flux

[108/cm2/year]

Scaled EKLM 1 MeV
Equivalent Flux
[108/cm2/year]

z = −14 m 1.27+0.03
−0.13 ± 0.25∗ 1180± 230

z = −8.0 m 0.07+0.00
−0.00 ± 0.01 654± 62 3.8 4.8

z = −5.6 m 0.14+0.00
−0.03 ± 0.03 367± 69

z = +6.6 m 0.14+0.13
−0.15 ± 0.06∗ 101± 45

z = +14 m (7+3
−5 ± 2)× 10−3 76± 19 148 20

z = +16 m (4+0
−4 ± 1)× 10−3 75± 13

Table 4.7: Predicted luminosity neutron fluxes over one Snowmass year (1× 107 s) in each TPC and
in the outermost KLM end cap layers in the FWD and BWD tunnels, scaled up to SuperKEKB’s
target luminosity of 6.3× 1035 cm−2s−1. The Raw EKLM Flux column shows expected annual
neutron flux in these outermost KLM end cap layers without any measurement-informed scalings.
The rightmost column shows these Raw EKLM flux estimates scaled by the corresponding highest
TPC data/MC ratio in each tunnel (ratios are starred in the table).

4.5.4 Neutron flux extrapolations at SuperKEKB’s target luminosity

We close this section off with estimates of neutron fluxes, including those that don’t produce

nuclear recoils, in the tunnel regions surrounding Belle II at SuperKEKB’s target luminosity of

6.3× 1035 cm−2s−1. We perform these extrapolations only for luminosity backgrounds under the

assumption that luminosity backgrounds are independent of beam optics settings and scale pro-

portionately to luminosity. In the interest of extrapolating neutron fluxes in the most pessimistic

scenario, we choose to perform our extrapolations assuming the larger of the two data/MC ratios

computed in each TPC (Table 4.5).

To estimate the measured neutron flux incident on each TPC from luminosity backgrounds,

we simply take the total number of luminosity-induced simulated neutrons, multiply this number

by the larger of the two measured data/MC ratios for that TPC, and scale it accordingly by the

relevant TPC dimensions and the simulated equivalent beam-time. We then convert this into a
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1 MeV equivalent Non-Ionizing Energy Loss (NIEL) damage-weighted flux.

We additionally scale the MC-predicted 1 MeV equivalent NIEL damage-weighted neutron flux

in the outermost BWD and FWD KLM end cap layers by the largest data/MC ratio of the TPCs

in the BWD and FWD tunnels, respectively, to provide an upper limit estimate of the neutron flux

reaching Belle II. Table 4.7 shows both the raw predicted neutron fluxes in the outermost KLM end

cap layers and the scaled prediction using the largest TPC data/MC fraction in each tunnel. We

note that if shielding is added between the TPCs and the KLM end cap layers, the TPC data/MC

fractions should remain constant, while the simulation-predicted neutron fluxes in the outermost

KLM end caps will change, so Table 4.7 can still be used to predict upper limit neutron fluxes in

the outermost KLM end cap layer after material description updates to simulation.

The annual upper limit neutron tolerance of the most neutron-sensitive Belle II subdetectors is

O(1011) neutrons/cm2/year [32], suggesting that all Belle II detectors are safe from luminosity-

induced neutron backgrounds in the tunnel. Even so, simulation predicts that up to 95% of

luminosity-induced neutrons are produced within the RBB hotspot regions shown in green in Fig-

ure 4.1, so given the localized nature of neutron production during collisions, additional shielding

around these RBB hotspots could be useful as a further safeguard for detector longevity.

4.6 Summary and conclusions of beam-induced fast neutron back-

grounds at SuperKEKB

The Phase 3 TPC system led to the first directional measurements of fast neutron backgrounds in

the tunnel region surrounding Belle II at SuperKEKB. Using an expanded simulation suite that

models the SuperKEKB-Belle II geometry out to |zBELLE| < 29 m, we provided direct comparisons

between measured and simulated neutrons in these tunnels surrounding Belle II. Comparing ob-

served and simulated Touschek rates, we find agreement within a factor of 2 between data and

simulation in all TPCs, indicating that Touschek production is modeled well in simulation. Beam-

gas backgrounds have much larger discrepancies, most notably LER beam-gas backgrounds in the

FWD tunnel where measured rates exceeded predictions of simulation by factors of up to 500. When

including contributions of neutrons generated from collisions, we find agreement between total ob-

served and predicted nuclear recoil rates within a factor of roughly O(10) in all TPCs except for

those at z = +14 m and z = +16 m where simulation greatly overestimates luminosity-dependent

neutron production. We note that further improvements to both the geometry and material de-

scription of collimator heads, magnets, shielding, and other components in the |zBELLE| < 29 m

tunnel region that have recently been implemented in Geant4 are not included in this work and

could lead to improvements in the agreement between measured and simulated background rates.

Comparing angular distributions of recoils, we conclude that the majority of observed and

simulated neutrons in the SuperKEKB tunnel near Belle II originate near the beam pipe and further
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find reasonable agreement between measured and simulated cos(θTPC) distributions. Given that

the simulated angular distributions only included luminosity backgrounds, and these backgrounds

overwhelmingly dominate the measured recoil rates in the BWD tunnel, we suggest that these

TPCs are sensitive to the predicted RBB hotspots.

When comparing the shapes of nuclear recoil energy spectra, in all except for the TPC furthest

away from Belle II in the BWD tunnel, we find similar broadness between measured and simulated

energy spectra. This indicates that the beam pipe and magnet material descriptions are modeled

well in simulation out to at least −8.0 m in the BWD tunnel and out to +16 m in the FWD tunnel.

From the BEAST Phase 2 and Phase 3 TPC exercises, we have learned that fast neutron

Touschek backgrounds are expected to dominate near the QCS final focus, while luminosity fast

neutron backgrounds overwhelmingly dominate in the BWD tunnel and are expected to dominate

in the FWD tunnel as luminosity increases. Since Touschek backgrounds are heavily dependent

on beam optics and collimator tuning, continued careful tuning is needed to maintain reasonable

Touschek background levels.

On the detector operation front, we demonstrated that the BEAST TPCs are capable of ob-

taining high purity nuclear recoil samples to reconstructed ionization energies as low as 6 keVee at

effective gains of O(1000) (Table 4.3). We’ve also introduced a new method that reduced head-tail

assignment bias for highly inclined tracks, leading to head-tail identification efficiencies of about

91% for simulated 4He recoils with ionization energies above 40 keVee that also point back toward

the beam pipe, compared to 72% on the same set of events without these corrections. This sample

of 4He events also has an average angular resolution within 8◦. Due to the finite dynamic range

of the FE-I4 readout, low gain operation is ideal for fast neutron background studies, however if

we want to push toward improving low energy directional sensitivity, angular resolution, and X-ray

rejection performance, we need to push to higher gain. The BEAST TPCs are capable of operating

at double GEM gains approaching 50,000—far beyond the threshold at which they are sensitive

to single electrons—so in Part II of this dissertation, we study high gain performance near single

electron efficiency and introduce new techniques for low energy electron rejection and directional

sensitivity in the BEAST TPCs.
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Part II: Deep learning for improved

directional recoil detection
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INTRODUCTION

In Part I we demonstrated excellent X-ray background rejection down to around 6 keVee and head-

tail recognition efficiencies of about 91% at an average angular resolution within 8◦ using a sample

of He recoils between 40 keVee and 1 MeVee in the BEAST TPCs operating at gains of O(1,000).

With low gain amplification, the majority of charge present in keV-scale nuclear recoils falls below

the FE-I4b threshold, meaning that in actuality, the true recoil energy is substantially higher than

the observed reconstructed recoil energy. As a result, electron rejection and head-tail directional

identification of a true 6 keVr recoil will be more challenging than doing so for reconstructed 6 keVee,

especially at lower gains where a TPC isn’t sensitive to charge from single electrons. The primary

reason for this is because the expected length of the primary track of the 6 keVee recoil will be

larger than that of the 6 keVr recoil, leading to 6 keVee recoils on average, having better angular

resolution and better defined principal axes compared to 6 keVr events. Even at gains where the

FE-I4 is sensitive to the charge of single electrons, reconstructed recoil energies for recoils below

around 100 keVr will be less than the true recoil energy due to ionization quenching. We have not

measured the so-called ionization quenching factor (IQF) for He recoils in the BEAST TPCs, so we

do not attempt to “undo” the energy loss due to quenching, but we do perform a high gain study

where we are nearly sensitive to the charge of single electrons.

Directional searches for O(GeV) WIMPs will require directional sensitivity and background

rejection for keV-scale nuclear recoils. When making the transition from neutron searches to WIMP

searches, we ideally want to operate in the single-electron efficiency regime so that charge is not

lost below threshold. Current readout technologies like the FE-I4 chips in the BEAST TPCs have a

limited dynamic range, so operating at single electron-efficiency is ideal for keV-scale nuclear recoil

searches, but not great for fast neutron measurements, as higher energy recoils are completely

dominated by saturated pixel hits at these gains, leading to poor energy resolution.

Over the course of Part II, we develop a deep learning approach to both particle identification

and directional head-tail assignment. In particular, we construct 3D convolutional neural networks

(3DCNNs) that are directly fed in 3D images of recoil tracks and train them for these two applica-

tions. As we’ll soon see, the native readout resolution of the FE-I4 chip lends itself nicely to the use

of 3DCNNs with current-generation hardware. Our overall goal in Part II is to make the case for

utilizing deep learning as an end-to-end approach for electron rejection and head-tail identification

in recoil imaging TPCs.
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CHAPTER 5
HEAD-TAIL IDENTIFICATION PERFORMANCE AT LOW

GAIN: SIMULATION BENCHMARK

5.1 Introduction

Of the performance metrics of directional DM detectors listed in Chapter 1, head-tail recognition

efficiency (coupled with event-level timing) is the most important quantity for improving DM sen-

sitivity [12]. Figure 5.1 illustrates this by comparing the number of nuclear recoil events required to

exclude a solar neutrino background hypothesis at 90% confidence limits versus head-tail recogni-

tion efficiency and angular resolution. Comparing the upper right-hand and lower left-hand corners

of these plots, we see that a detector with no angular resolution but perfect head-tail identification

requires significantly fewer events for rejecting solar neutrino backgrounds than a detector with

perfect angular resolution but no head-tail recognition. Figure 5.1 is concerned with directional

sensitivity beneath the neutrino floor, which corresponds to keV-scale nuclear recoils. While the

ultimate goal is to demonstrate head-tail sensitivity for keV-scale nuclear recoils, any improvement

in head-tail assignment performance is desirable. As a reminder, head-tail recognition efficiency,

εht, is the fraction of events where the scalar product between the true initial direction of the recoil

and the reconstructed observed recoil event is positive.

Figure 5.1: Taken from [12]: Estimated performance for the discrimination of solar neutrino back-
ground and DM signal events assuming a WIMP mass of 10 GeV, a negative ion drift He:SF6 target
gas and a threshold of 1 keVr. The color scale represents the number of F recoils (left) and He recoils
(right) needed to exclude a solar neutrino background hypothesis at a 90% confidence level.
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Gas
[70%:30%]

W
[eV]

Gain
~vd

[µm/BCID]
(σT , σL)

[µm/
√

cm]
(σT,GEM, σL,GEM)

[µm]

He:CO2 35 909 216.25 (114, 114) (180,180)

Table 5.1: Digitization parameters for our low gain head-tail simulation campaign. σT,GEM and
σL,GEM represent the transverse and longitudinal point resolution of the readout plane, excluding
the pixel chip.

Our aim in this chapter is to introduce and benchmark new analysis techniques that lead to

improved head-tail assignment efficiencies in the BEAST TPCs. The techniques we benchmark

are:

1. Baseline: Head charge fraction method (Chapter 5.3)

2. Log likelihood (LL) method (Chapter 5.4)

3. Primary track recovery (ptr) [82] (Chapter 5.5)

4. Deep learning (3DCNN) method (Chapter 5.6)

We focus on low gain in this chapter because our baseline method of head-tail assignment has been

well validated on higher energy nuclear recoils both in simulation and in measurement (Chapter

4.5.3 and Refs. [47; 48]), making low gain settings a good starting point.

5.2 Overview of simulation

We use the Geant4 ParticleGun module present in basf2 [65] to shoot α particles inside the sensitive

volume of a TPC. We generate 612,505 α tracks (He recoils) with a uniform distribution of energies

between 0.035 keVr and 525 keVr. The α tracks are fully fiducialized with initial vertices located at

(xTPC, yTPC, zTPC) = (1.00 cm, 0.84 cm, 5.00 cm), and isotropic direction (uniform φ and uniform

cos(θ) distributions). After the primary ionization track is generated, the same Geant4 simulation

processing described in Chapter 4.2 is used. We also use the digitizer described in Chapter 4.2

to drift, diffuse, amplify, and digitize each event with parameters shown in Table 5.1. Figure 5.2

shows six digitized simulated He recoil tracks with their corresponding reconstructed ionization

energies (in keVee) and true recoil energies (in keVr). Our simulated gain of 909 is well below single

electron efficiency so there will always be charge near the perimeter of the tracks that falls under

threshold. As track energy increases, the fraction of total event charge below threshold in general

decreases. For the highest energy track in this event display, many pixels are saturated which limits

the energy resolution, as the true amount of charge deposited on these pixels is larger than our

saturation limit.
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Figure 5.2: 3D charge distributions of six simulated He recoil tracks shown in the same event display.
Each track is labeled with the reconstructed ionization energy (in keVee) and true ionization energy
(in keVr).
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5.3 Head charge fraction (baseline) method

Recall from Chapter 4.5.3 that the stopping power of alpha recoils from fast neutrons fall beyond

the Bragg peak (Figure 5.3), leading to a decrease in energy deposition of the recoiling nucleus the

further it travels. This leads to a detectable charge asymmetry in nuclear recoil tracks that can be

used to infer the vector direction of a track.

Figure 5.3: Taken from [82]: Simulated Bragg curves for one hundred 1 MeV alpha tracks (red
lines) simulated in SRIM. Here positive xt corresponds to the initial momentum direction of the
recoil track with xt = 0 being the track’s stopping end (head). The blue curve is a fit representing
the average behavior of these Bragg curves. The negatively sloped region of the blue curve is what
we refer to as the region beyond the Bragg peak.

We use the following procedure to utilize this charge asymmetry to assign a vector direction to

nuclear recoils:

1. Identify the principal axis of the track using an SVD.

2. Split the track in half along the midpoint of the track’s principal axis.
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Figure 5.4: Taken from [48]: 3D charge distributions of nuclear recoil tracks with their assigned
direction using the baseline HCF method (left) and charge distributions along the track’s principal
axis (right). In this figure, the principal axis was determined using a χ2 minimization rather than
the SVD we use throughout this work. The green line in the right hand plots shows the geometric
center of these tracks. The left side of the green vertical line is the head-half of the track, with the
head charge fraction labeled above the histogram.

3. Compute the fraction of charge on each half of the track.

4. Assign the vector head to the side of the track with less charge. We call the fraction of charge

on the head-half of the track the head charge fraction (HCF) and with this procedure we have

0 < HCF < 0.5.

Moving forward we will refer to this head-tail assignment procedure as the HCF method, or the

baseline method. Figure 5.4 shows an example of the usage of the baseline HCF method to assign

vector direction. The left plot in this figure shows six recoil tracks labeled (a)-(f) with associated

arrows indicating their assigned vector direction. The right plot shows the charge distribution of

each of the six tracks along the length of their principal axis. The green line indicates the geometric

center of the track, so the head direction is assigned to the left side of the green vertical line. We

may make selections on HCF to optimize head-tail assignment efficiency when assessing head-tail

performance in our simulated sample.

5.4 Log likelihood (LL) method

In Chapter 4.5.3 we mentioned that charge integration effects can bias the detected charge asym-

metry in highly inclined observed tracks, leading to frequent head-tail misassignment for highly
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inclined downgoing (cos θ < 0) tracks using the baseline HCF method. Figure 5.5 illustrates this

bias on a comparison between the x-z projection of a digitized recoil track and its truth primary

ionization distribution. The detected track is split in half along its principal axis and the bin high-

lighted in red with a block border is filled with the charge highlighted in the pale red band of the

primary track. We see that on the primary track, most of this charge comes from the upper half

of the track, but because of the way charge is integrated in our detector, this detected charge is in

the lower half of the measured track. As a result, the baseline HCF method would misassign this

track as upgoing.

Figure 5.5: Taken from [82]: Illustration of head-tail mismeasurement resulting from the charge
integration of a downgoing 400 keVr recoil with θTPC = 150◦.

The log-likelihood (LL) method is a recasting of the axial inclination correction method that

was introduced in Chapter 4.5.3 to correct for this charge integration bias. The procedure for

implementing the LL method is as follows:

1. Assign all tracks to point initially upward, so that 0 < cos θassign < 1. Let UCF represent the

head charge fraction with this upward pointing assignment.

2. Use a Gaussian kernel density estimation (KDE) to generate unnormalized 2D likelihood

functions, Lup (UCF, cos θassign) and Ldown(UCF, cos θassign). Lup(UCF, cos θassign) is the KDE

generated from the UCF vs. cos θassign for true upward pointing tracks and

Ldown(UCF, cos θassign) is the KDE generated from the UCF vs. cos θassign for true downward
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Figure 5.6: Unnormalized 2D likelihood distributions (top row) with corresponding normalization
functions (bottom row) for upward (left column) and downward (right column) facing tracks.
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pointing tracks (top row of Figure 5.6). We use Scott’s rule [84] to determine the bandwidth

of the KDE.

3. Use a Gaussian KDE to construct 1D likelihood functions Nup(cos θassign) and

Ndown(cos θassign), where Nup(cos θassign) and Ndown(cos θassign) are generated using truth up-

ward and truth downward facing tracks, respectively.

4. Normalize the 2D likelihood functions. To be specific, we compute normalized likelihood

functions L′up and L′down where L′up ≡ Lup/Nup and L′down ≡ Ldown/Ndown.

5. The confidence of our decision is given by −2 log
(
L′up/L′down

)
, which we use as a variable

to assign head-tail. We assign tracks to be upward pointing if −2 log
(
L′up/L′down

)
< c and

tracks to be downward pointing if −2 log
(
L′up/L′down

)
≥ c. In this way, c can be called our

directional decision boundary. We set c to be the value that maximizes the truth head-tail

recognition efficiency in a given sample.

Figure 5.7 shows the distributions of log-likelihood confidences for truth upgoing and downgoing

tracks. The black vertical line represents the value of c chosen where tracks to the right of this line

are assigned to be downward and tracks to the left of this track are assigned to be upward. This value

of c was determined to maximize the head-tail recognition efficiency, εht. The normalized upgoing

and downgoing likelihood templates, as well as the directional decision boundary, c, determined

using simulation can also be applied to measurement.

5.5 Primary track recovery (ptr) method

Primary track recovery (ptr) [82] is a recently developed algorithm that was demonstrated on the

BEAST TPCs as a technique to deconvolve detector effects and recover the primary ionization

distribution of recoil tracks. Here we only briefly outline the steps that are needed to compute and

optimize vector head-tail using ptr and refer the reader to Ref. [82] for a detailed description of

the algorithm.

ptr algorithm for head-tail assignment

1. Define track unit vectors (x̂track, ŷtrack, ẑtrack). x̂track is the detected track’s principal axis,

ŷtrack is defined as

ŷtrack =
ẑ × x̂track

sin(θ)
, (5.1)

and ẑtrack is defined as ẑtrack = x̂track × ŷtrack. The detected track transformed into the

track-coordinate system is shown in the upper left panel of Figure 5.8.
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Figure 5.7: Log-likelihood confidence distribution of a random subset of about 230,000 of the
simulated α tracks described in Chapter 5.2. True upward pointing tracks are shown in blue and
true downward pointing tracks are shown in orange. The black vertical line represents the chosen
value of c for which all events to the right (left) of this line are assigned to be downward (upward)
facing by the LL method.
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2. Slice the track along xtrack and sample the charge at steps along ytrack at each slice along xtrack:

We use 100 µm spacing for the samples and slices along xtrack and ytrack, so we oversample

in x and undersample in y. At each xtrack slice (the vertical gray band in upper right panel

of Figure 5.8 is an example of a slice), we collect the charge over all of the ytrack samples

within the slice. The ytrack sample charges (indicated by color in Figure 5.8) are obtained by

a bilinear interpolation from the charge in the pixel and its four surrounding pixels. If any one

of the four surrounding pixels doesn’t have charge or is saturated, the sample is discarded.

3. Fit a Gaussian profile of the form Af̂(ytrack;µ, σsT ) to the charges sampled along each slice.

Here σsT is the estimated transverse diffusion of the slice. The bottom left panel of Figure 5.8

shows the charge profile fit that corresponds to the information within the vertical gray bands

in the upper and lower right panels in this figure.

4. Derive the linear charge density at each xtrack slice using

λ(xtrack) =
AσsT
√

2π sin(θ)

GLxLy
, (5.2)

where A and σsT are determined from the charge profile fit in step (3), G is the gain, and Lx

and Ly are the length of the ionization distribution along the x and y axes, respectively.

5. The distribution of λ(xtrack) versus xtrack over each slice is the estimated “smeared”1 Bragg

distribution of the track (green bars in Figure 5.8). We fit this smeared Bragg distribution

under two hypotheses: (i) that the track’s vector direction matches the assigned direction from

the SVD fit, and (ii) that the track’s vector direction is flipped with respect to the orientation

assigned by the SVD fit (x̂track → −x̂track). We fit both of these hypotheses with a second

order Chebyshev series (one hypothesis fit is shown as the solid magenta line in Figure 5.8)

and assign the vector direction to the fit hypothesis that has the lowest |χ2/dof− 1|.

We can use the difference in the reduced χ2 of the two Bragg fit hypotheses, ∆χ2/dof, as a

variable to optimize head-tail performance. These steps for determining vector direction may be

applied to measured recoil tracks as was demonstrated in Ref. [82].

5.6 Deep learning (3DCNN) method

Here we introduce a 3DCNN classifier for head-tail identification. We first introduce the core

building blocks of 3DCNNs and then discuss the data processing and class labeling convention

1We call this smeared because it’s smeared by the diffusion along xtrack. The ptr algorithm attempts to undo this
smearing and recover the primary track, but we don’t discuss this here since we’re only interested in using ptr to
assign vector head-tail direction.
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Figure 5.8: Adapted from [82]. Top left: Recorded ionization distribution rotated into the track
coordinate frame. Colors represent charge with lowest charge in navy and highest charge in yellow.
Top right: Slice and sample discretization as described in step (2). Bottom left: Profile of charge
samples transverse to xtrack within the gray shaded region in the top and bottom right panels.
Bottom right: The green bars and solid magenta lines are relevant here and are described in steps
(4) and (5). The magenta bars represent the true primary charge distribution of the track projected
along its principal axis, and the dashed magenta lines represent the “unsmeared” Bragg fit which
isn’t relevant to this work.
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used to train the 3DCNN to assign vector directions to tracks. We wrap this section up with a

description of the network architecture we built, as well as our training procedure.

5.6.1 Building blocks of feature extraction in 3DCNNs

Figure 5.9: Schematic representation of the dimensionality reduction of a 3D convolution operation
with a convolutional stride of S = (2, 2, 2). Here N ∈ R16×16×16, and K ∈ R2×2×2. The black lines
connecting the two red shaded regions illustrate the action of K on N [14, 0, 14], a 2×2×2 sub-block
of N , leading to the 1 × 1 × 1 element C14,0,14 of C ∈ R8×8×8. Each index α, β, and γ of C runs
along {0, 2, 4, 6, 8, 10, 12, 14} due to the convolutional stride of S = (2, 2, 2). The pink regions show
the next element of the convolution operation after striding 2 units along the y direction on N .

3DCNNs are not yet widely used for natural image classification due to the large amounts of

GPU memory required to store and perform operations on large 3D images with high voxel density.

The lower energy recoil events that are of interest in directional DM searches, however, have their

entire event topologies contained within a relatively small region, enabling the use of 3DCNNs

with current-generation hardware, even in detectors with high spatial resolution. Here we briefly

introduce 3D convolutions and 3D pooling; two core building blocks of our 3DCNN.

3D Convolutions

In 3DCNNs, the 3D convolution operation is a 3D cross correlation of an input grid of data, N ,

with a kernel (also called a filter), K, that slides along the input grid. To be more specific, let

N ∈ Rnx×ny×nz (often called an input feature map), and let K ∈ Rkx×ky×kz , where kj ≤ nj ; j =

x, y, z. We denote the shapes of N and K as (nx × ny × nz) and (kx × ky × kz), respectively.

The action of K on N [α, β, γ], a kx × ky × kz sub-block of N , is an element, Cαβγ , of the output

“convolved” feature map, C, and is a mapping from Rkx×ky×kz → R defined by
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(K ? N [α, β, γ])αβγ =

kx−1∑
l=0

ky−1∑
m=0

kz−1∑
n=0

Nα+l,β+m,γ+nKlmn ≡ Cαβγ , (5.3)

where α+ kx ≤ nx, β + ky ≤ ny, γ + kz ≤ nz, and (K ?N [α, β, γ])αβγ is a single element of the 3D

cross correlation operation.

C is formed by sliding K in integer steps of Sx, Sy and Sz along the x, y, and z extents of N ,

respectively. In particular, C is an ordered grid composed of all bnx−kxSx
+1c×bny−kySy

+1c×bnz−kzSz
+1c

elements of (R ? N [rx, ry, rz])rxryrz , where rj ∈ {0, Sj , 2Sj , . . . , bnj−kjSj
+ 1c}; j = x, y, z, and bc

represents the floor operator, telling us that we only compute elements of C when the shape of K

is entirely contained within N . We call Sx, Sy, and Sz, the convolutional stride in x, y, and z, and

will more compactly use S ≡ (Sx, Sy, Sz) to denote the convolutional stride of a 3D convolution

operation. Figure 5.9 shows an example of the shapes of input and output feature maps, where a

2× 2× 2 filter acts on a 16× 16× 16 input feature map with a convolutional stride of S = (2, 2, 2),

leading to an 8×8×8 output grid. We can also use zero padding where we pad the outer perimeter

of our input grid, N with P = (Px, Py, Pz) layers of zeros. Here, Pj is a positive integer or zero

and j = x, y, z. More generally, a kx × ky × kz kernel acting with a stride of (Sx, Sy, Sz) on an

nx×ny ×nz input feature map with additional zero padding of (Px, Py, Pz), will lead to an output

feature map of shape (Cx × Cy × Cz), where

Cj =

⌊
nj − kj + 2Pj

Sj
+ 1

⌋
; j = x, y, z. (5.4)

In a 3DCNN, the elements of the convolutional filters, Klmn are learnable parameters, so the

network attempts to learn the features of interest to extract from a feature map.

3D Pooling

Pooling is an operation commonly used in convolutional neural networks to downsample a feature

map while still retaining important information for classification. In our 3DCNN we include average

pooling layers (called AvgPool; Chapter 5.6.3). Similar to a 3D convolution, the average pooling

operation involves a 3D filter of a given size sliding over an input feature-map, N , but the average

pooling operation simply computes the mean of all elements contained in the sub-block of N that

the filter is sliding over. The average pooling operation will thus lead to an output feature map C

of shape given by Equation (5.4). Since average pooling simply computes the mean of all elements

in a sub-block of N , there are no learnable parameters associated with average pooling.
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5.6.2 Data processing for the 3DCNN

The simulated recoil sample described in Chapter 5.2 includes 3D binned pixel hit information

with associated charges (in TOT). Our aim is to feed 3D binned charge distributions of each event

into the 3DCNN and have the 3DCNN output a class-assignment that corresponds to the head-tail

direction of the recoil associated with its event image. In order to do this, we need to process the

data into a grid of 3D voxels over which the operations contained in the 3DCNN (3D convolutions

and average pooling) can be performed.

As mentioned in Chapter 5.2, the simulated events are fully fiducialized within the 2.00 cm ×
1.68 cm × 2.16 cm readout volume and the readout resolution is 250 µm × 50 µm × 216 µm. With

this information, we could choose to process the entire readout into an 80 × 336 × 100 grid of

250 µm × 50 µm × 216 µm voxels but this would be computationally inefficient as none of our He

recoils come close to spanning the entire readout in any dimension. To reduce computational

expense, we shift each event so that the lowest binned charge in x, y, and z is at the origin.

Shifting in this way ensures that the entire event topology of every event in our sample is fully

contained within a (34× 170× 34) grid of voxels, which we use for each recoil event.

We use the PyTorch [85] library for all neural network computations and store each event as

a 2-tuple with the first entry being the (34 × 170 × 34) voxelgrid filled with the binned charge

of the centered-event and the second entry being the class-label of the event. We assign binary

class-labels to events based on which φ hemisphere the event lies in. In particular, we assign a label

of 1 if cosφtruth < 0 and a label of 0 if cosφtruth > 0. In this convention, forward-scattered nuclear

recoils from neutrons incident on the lid (bottom) of a BEAST TPC are expected lie in the negative

(positive) φ hemisphere, where the negative (positive) φ hemisphere is defined by cosφtruth < 0

(cosφtruth > 0). In Chapter 6 we run experiments with a neutron source incident both on the

lid and bottom of a TPC, so this is why we choose this labeling convention here. Our reason for

labeling tracks based on φtruth, rather than φmeasured is so that we train the neural network to learn

head-tail assignments on a recoil quantity that is independent of angular resolution and choice of

principal axis.

Since raw dense voxelgrids are composed mostly of zeros, we save voxelgrids as sparse PyTorch

tensors. Sparse tensors contain separate arrays of the x, y, and z bin numbers containing nonzero

charge and the associated charge value at each (x, y, z) triplet. Our usage of sparse tensors saves

a considerable amount of space, as storing each entry in a raw dense tensor format containing

unsigned 8-bit integers would require around 200 kB per event. This equates to about 120 GB of

space needed to store our entire sample of event images, compared to the 6.3 GB when storing

voxelgrids as sparse tensors. When we load images and feed them into the CNN, we first convert

the sparse tensors back into dense tensors, as all convolution and pooling operations in the 3DCNN

are performed over dense tensors.
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5.6.3 Network architecture

Figure 5.10: Architecture of our 3DCNN classifier. Within the feature extraction portion, each
of the gray-scale prisms represents a unique feature map (indicated by the different shade of each
map), with the size of the prisms shown roughly to scale in reference to the dimensions of the input
image. The number of feature maps in each layer is listed above each layer and a feature map
is illustrated at each layer through one possible traversal through the feature extraction layers.
The illustrated feature maps downstream of ConvBlock2 show voxels of arbitrary and varying
transparency to highlight distinct features. Solid black lines connect larger red prisms, which
illustrate the convolutional or pooling filters acting on a portion of the feature map, to the smaller
magenta cubes which are the outputs of the convolutional filter acting on the region shown in the
input feature map. Each line is annotated with its associated computation name (description of
each computation are in Table 5.2) and the size of the filter applied. The final eight feature maps
are then flattened and passed into a fully connected neural network for classification, where in this
diagram 1 represents tracks with cos θtruth < 0 and 0 represents tracks with cos θtruth > 0. The
FCNN diagram was produced using [86].

Figure 5.10 and Table 5.2 together outline the network architecture of our 3DCNN. As is shown

in Figure 5.10, our network consists of a series of convolutional and pooling layers for feature

extraction, followed by a dense fully connected neural network (FCNN) for event classification.

Within the feature extraction portion of the neural network, we employ seven convolutional blocks

(ConvBlocks 1-7) and two pooling layers (AvgPool) to downsample the feature maps while still

maintaining important features. Each of the seven convolutional blocks contain the following
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Layer
#

Filters
Filter size S P

# Learnable
parameters

Dropout Output shape

ConvBlock 1 8 (2× 2× 2) (1,2,1) 0 88 0.05 (8× 33× 85× 33)
ConvBlock 2 16 (3× 3× 3) (1,2,1) 0 3,504 0.05 (16× 31× 42× 31)
ConvBlock 3 32 (2× 3× 2) 1 0 6,240 0.05 (32× 30× 40× 30)

AvgPool 32 (2× 2× 2) 2 0 –– –– (32× 15× 20× 15)
ConvBlock 4 64 (2× 3× 2) 1 (1,0,1) 24,768 0.05 (64× 16× 18× 16)
ConvBlock 5 32 (3× 3× 3) 1 (1,0,1) 55,392 0.05 (32× 16× 16× 16)

AvgPool 16 (2× 2× 2) 2 0 –– –– (32× 8× 8× 8)
ConvBlock 6 16 (2× 2× 2) 1 0 4,144 0.05 (16× 7× 7× 7)
ConvBlock 7 8 (2× 2× 2) 1 0 1,048 0.05 (8× 6× 6× 6)

FC1 –– –– –– –– 110,656 0.05 (64× 1)
FC2 –– –– –– –– 1,040 0.05 (16× 1)
FC3 –– –– –– –– 34 –– (2× 1)

Table 5.2: More specific details of each layer that is shown in Figure 5.10. We assume a single
(1 × 34 × 170 × 34) image is fed into the network. The output shape column gives the shape of
the output after each layer. The output of ConvBlocks 1-7 and AvgPool is a tensor of dimension
(#FeatureMaps×L×W×H), where L, W, and H are the length, width and height of each feature
map, respectively. S is the convolutional stride of the layer and P is the zero padding. When S and
P are given as integers, it is to be understood that the given amount is applied to all three spatial
dimensions of the image, and when they are given as tuples, it is understood that the tuples are of
the form (nx,ny,nz), so S = (1, 2, 1) means a convolutional stride of 1 in x and z and a stride of 2
in y. The output shapes of the FC layers are 1 dimensional vectors for each node in a given layer.
In addition to the weights and biases associated with each node in the FCNN, the entries within
each convolutional filter in the 3DCNN are also learnable parameters, so we list the total number
of learnable parameters in each layer.
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components: (i) A 3D convolution with a convolutional filter size listed in Table 5.2, (ii) a 3D

batch normalization [87], (iii) a scaled exponential linear unit (SELU) activation layer [88], and

(iv) a randomized dropout [89] of 0.05 to reduce overfitting.

Walking through our network architecture, we start with a (34 × 170 × 34) input image. We

implement a stride of Sy = 2 in both the ConvBlock1 and ConvBlock2 to downsample in y while

picking out features of importance. Doing so reduces the computational overhead of training

and evaluating our network over maintaining such a large y dimension compared to x and z. In

ConvBlock3, we apply a prism shaped (2 × 3 × 2) filter so that the output feature map of this

layer has even number of voxels in all spatial dimensions. This makes it so each of the 32 AvgPool

computations performed in this layer will sample each unique voxel in the image. ConvBlock4

and ConvBlock5 have their convolutional filter sizes and zero padding, P , carefully chosen so

that the output feature map of ConvBlock5 will have an equal number of voxels along all three

spatial dimensions. After ConvBlock5, we downsample with another AvgPool layer and finally,

we perform two final convolutional blovks (ConvBlock6 and ConvBlock7) where we end up with

eight (6 × 6 × 6) feature maps. Since the values composing each convolutional filter are learnable

parameters, we expect that when the network is trained, there will be useful features encoded in

these most downstream feature maps. We finally flatten these downstream feature maps into an

((8 × 6 × 6 × 6) × 1) = (1728 × 1) vector that contains each extracted feature at the end of the

convolutional chain. This flattened (1728 × 1) feature vector is then fed into a fully connected

dense neural network with two hidden layers and output class assignments corresponding to recoils

assigned in the negative φtruth hemisphere (labeled 1) and in the positive φtruth hemisphere (labeled

0). Each of the three fully connected layers (FC1, FC2, and FC3) use a SELU activation function

and FC1 and FC2 include a random dropout of 0.05. The raw model output of each event is a (2×1)

vector, z, with entries corresponding to each both class outputs (cosφtruth < 0, and cosφtruth > 0).

The softmax function

σ(z)i =
ezi∑2
j=1 e

zj
. (5.5)

is applied to z to map the class outputs zi ∈ z to class probabilities. We henceforth label σ(z)1,

and σ(z)2, as p−, and p+, which represent the model-predicted class probabilities of cosφtruth < 0,

and cosφtruth > 0, respectively.

5.6.4 Training the network

We first shuffle the order of all events and then split the data into distinct training, validation, and

test sets with 306,252 events in our training sample, 76,563 events in our validation sample, and

229,690 events in our test sample. We set the test sample aside and train using stochastic gradient
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descent with minibatch updates of size 128 and cross-entropy loss. In other words, we implement

the following procedure to train our model:

1. Form a PyTorch tensor of dimension (128,1,34,170,34), which is composed of 128 randomly

selected voxel images (each represented as a dense tensor) from the training sample. We call

this tensor a minibatch.

2. Feed the minibatch and the corresponding truth label of each image of the minibatch into

the 3DCNN.

3. Use PyTorch’s built in CrossEntropy loss function to compute the loss of the batch. We wish

to minimize this loss. We use an Adam [90] optimizer with a learning rate of 0.0002.

4. Update model weights using backpropagation [91].

5. Repeat steps 1-4 until we’ve run through all events in the training set. This is called a training

epoch.

6. At the end of each training epoch, repeat steps 1-3 for the validation sample. We do not

implement step 4 as we don’t wish to train the 3DCNN on the validation set. Compute the

sum of the losses of each minibatch of the validation sample.

7. If the summed losses over the validation set minibatches are less than in the previous epoch,

we treat this as the model learning and save all model weights.

8. Implement early stopping [92] where steps 1-7 are repeated until the total validation loss

doesn’t decrease at all over 10 successive epochs.

9. The model state corresponding to the epoch with the lowest validation loss is our trained

model.

After our network is trained, we feed the test set through the network. By construction of the

Softmax function, class probabilities p− and p+ satisfy p− + p+ = 1, so we only use p− as our

variable to optimize head-tail performance.

Figure 5.11 shows distributions of p− and cos θtruth over various energy ranges subject to whether

the 3DCNN correctly or incorrectly identified head-tail direction. Distributions of events with

correctly (incorrectly) assigned head-tail direction are shown in blue (orange). Looking at the

p− distributions, we see that over all energies, this distribution is slightly asymmetric about 0.5,

with more events incorrectly classified as being in the negative φtruth hemisphere than being in the

positive φtruth hemisphere. This asymmetry is most distinctly seen at lower energies (middle-right

panel of Figure 5.11) where there are more misclassified events than correctly classified events

plotted in the cosφtruth > 0 region, meaning these events have cosφtruth > 0 but are falsely
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Figure 5.11: Distributions of 3DCNN output probability p− (left), and the cosine of the true φ
angle of the recoil (right). Distributions of events with correctly (incorrectly) assigned head-tail
direction are shown in blue (orange). The top row of plots shows events over all energies, the middle
row shows low energy events satisfying Ereco < 40 keVee, and the bottom row shows higher energy
events above 40 keVee.
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predicted by the 3DCNN to have cosφtruth < 0. Above 40 keVee (bottom row of Figure 5.11) we

observe approximately symmetric head-tail classification performance both in p− and in cosφtruth,

which is what we would expect for a good head-tail classifier trained on isotropic simulated recoils.

Looking at the left panel in all three rows of Figure 5.11, we find that in the neighborhood of

p− = 0.5, the number of incorrectly assigned events essentially matches the number of correctly

assigned events, so performance is essentially a coin-flip as expected. As p− approaches 0 or 1,

however, we find that the 3DCNN classifier performs extremely well. Given this behavior of the

p− distribution, we form a new confidence-based quantity

w ≡ 2

∣∣∣∣p± − 1

2

∣∣∣∣ , (5.6)

which by construction peaks near 0 when the classifier is maximally uncertain, and peaks near

1 when the classifier is certain. It can be shown that w will be the same regardless of whether

we input p+ or p−, hence the p± designation in Equation (5.6). We use w as our quantity for

optimizing εht with the 3DCNN classifier.

5.7 Results

Here we compare the results of each head-tail assignment method on the test sample of 229,690 He

recoil events. We use the test set so that we can fairly evaluate head-tail performance on an identical

sample of recoils that the 3DCNN wasn’t trained on. We start by generating ROC-like εht versus

εHe distributions to assess performance of making selections based on the head-tail optimization

variable we previously defined for each of the techniques. To allow for a direct comparison of

performance, we compare the head-tail efficiencies of each method that correspond to 50% He

recoil efficiency.

5.7.1 Baseline method

For the baseline method, our head-tail discriminant variable is the head charge fraction (HCF). The

left panel of Figure 5.12 shows the HCF distribution of events after having their vector direction

flipped so that 0 < HCF < 0.5 as described in Chapter 5.3, and the right panel shows the ROC

curve generated from this selection. The vertical black line on the left panel of this figure shows

HCF = 0.355 which is the HCF selection value corresponding to εHe = 0.5. The ROC curve on

the right tells us that for the sample of recoils with HCF < 0.355, we keep 50% of He recoils and

correctly assign head-tail for 79% of these recoils.
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Figure 5.12: Left: HCF distributions with correctly assignments in blue and incorrect assignments
in orange. The vertical black line shows the HCF value corresponding to εHe = 0.5. Right: ROC
curve showing εht versus εHe at various HCF selections. About 79% of events with HCF < 0.355
have correctly assigned vector direction.

Figure 5.13: Left: Absolute value of the normalized log-likelihood ratios, with events with correctly
assigned head-tail in blue and incorrectly assigned vector direction in orange. The vertical black
line at |2 log

(
L′up/L′down

)
| = 3.4 is the 50% He recoil efficiency line. We find that nearly 94% of

events with |2 log
(
L′up/L′down

)
| > 3.4 have correctly assigned vector direction.
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5.7.2 LL method

Moving forward, we use the absolute value of the normalized log-likelihood ratio, |−2 log
(
L′up/L′down

)
|,

as our selection variable for head-tail performance with the LL method.

Figure 5.13 shows the head-tail classification performance of choosing |2 log
(
L′up/L′down

)
| > 3.4

which corresponds to about 50% He recoil efficiency. From the right panel of this figure, we find

that these selections correspond to a head-tail recognition efficiency of about 0.94. Furthermore

we find a head-tail recognition efficiency of over 81% at 100% He recoil efficiency which is already

higher than the best performing head-tail recognition efficiency using the baseline method.

5.7.3 ptr method

We evaluate head-tail performance using ∆(χ2/dof), the difference in reduced χ2 between the two

Bragg fit hypotheses determined by the ptr algorithm. Figure 5.14 shows that a selection of

∆(χ2/dof) > 56 corresponds to εHe = 0.5 with εht near 0.98.

Figure 5.14: Left: Distribution of difference in reduced χ2 of Bragg fit hypotheses with correctly
assigned events in blue and incorrectly assigned in orange. The vertical black line indicates the value
above which we have εHe = 0.5. Right: ROC curve showing εht versus εHe at various ∆(χ2/dof)
selections. Nearly 98% of events with ∆(χ2/dof) > 56 have correctly assigned vector direction.

5.7.4 3DCNN method

We use w = 2|p− − 1/2| as our head-tail selection variable. Figure 5.15 shows that selections on w

lead to remarkable head-tail assignment performance even at high recoil efficiencies. In particular

we find that a selection of w > 0.9948 corresponds to a 50% He recoil efficiency and a head-tail

recognition efficiency of 99.9%. Moving further to the right along the ROC curve in Figure 5.15,
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we find that at εHe = 0.75, the 3DCNN correctly classifies the head-tail direction 97.9% of events

(w > 0.57), meaning the 3DCNN classifier at 75% He recoil efficiency outperforms the head-tail

performance of the other three methods at 50% efficiency.

Figure 5.15: Left: Distribution of w = 2|p− − 1/2| with correctly assigned events in blue and
incorrectly assigned events in orange. The vertical black dashed line indicates the value above
which we have εHe = 0.5. Right: ROC curve showing εht versus εHe at various w selections. The
3DCNN is a nearly perfect classifier for this sample of events at 50% He recoil efficiency.

5.8 Results summary

Baseline LL ptr 3DCNN

εht at εHe = 0.5 0.790 0.937 0.978 0.999

Table 5.3: Head-tail efficiencies of each of the four methods at 50% He recoil efficiency.

Table 5.3 summarizes the head-tail efficiencies of each method at εHe = 0.5. Over our entire

sample of recoils, we find that our newly introduced 3DCNN performs significantly better than the

other methods at this fixed He recoil efficiency.

We’re ultimately interested in how head-tail assignment performance varies with energy. To

study this, we group our recoil sample into energy bins of width 10 keV with bin centers ranging

from 5 keV to 515 keV. We then use each of our head-tail selection variables to, within each bin,

determine the selection that corresponds to 50% He recoil efficiency, and compute the corresponding

head-tail recognition efficiency. Figure 5.16 shows these head-tail recognition efficiencies versus

energy where we generated energy bins based on reconstructed ionization energy (keVee; top plot)
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and truth recoil energy (keVr; bottom plot). We call this the “grand summary” of our head-tail

performance, as it illustrates optimized head-tail performance in each energy bin.

Figure 5.16: Head-tail recognition efficiency versus reconstructed recoil energy (top) and truth recoil
energy (bottom) computed on isotropically-simulated He recoils at a gain of 910 for all four head-tail
assignment methods. Each data point shows the head-tail recognition efficiency corresponding to
50% He recoil efficiency within the energy bin using the head-tail selection variable for the method
shown. The 3DCNN gives both the best overall head-tail performance and the best head-tail
performance at low energies.

Despite ptr outperforming the LL method when a single discriminant threshold is used at all

recoil energies (Table 5.3), we find from this figure that the LL method performs much better

than ptr at low energies, which are more relevant for dark matter detection. Indeed, the me-

dian energy of events remaining using LL selections over all energies corresponding to 50% He

recoil efficiency is 210 keVee compared to 278 keVee for ptr selections, indicating that selections on

∆(χ2/dof) have a stronger preference for selecting higher energy nuclear recoils than selections on

|2 log
(
L′up/L′down

)
|. Our results show event-level head-tail recognition efficiencies of 90% between
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40 keVr and 50 keVr with the 3DCNN, and non-negligible head-tail recognition sensitivity down

to around 25 keVr. While these results are a promising start and Figure 5.16 suggests that the

3DCNN significantly outperforms other head-tail determination strategies, these results must be

validated with measurement before they are truly meaningful.
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CHAPTER 6
HEAD-TAIL IDENTIFICATION PERFORMANCE AT LOW

GAIN: EXPERIMENTAL VERIFICATION

In this chapter, we detail an experiment to measure the head-tail effect and evaluate the per-

formance of our 3DCNN head-tail classifier evaluated on experimental data.

6.1 Overview and experimental setup

We use a ∼3-µCi 252Cf fast-neutron source enclosed in a borated polyethylene shield to generate

nuclear recoils in a single BEAST TPC. The shield has a small hole, providing a collimated neutron

beam incident on the TPC. We run three measurement campaigns, labeled (i), (ii), and (iii) in

Figure 6.1. Campaign (i) includes about 145 hours of continuous data collection with the 252Cf

source incident on the lid of the TPC; Campaign (ii) includes about 185 hours of continuous data

collection with the 252Cf source incident on the bottom of the TPC; and Campaign (iii) includes

about 337 hours of continuous data collection with no neutron source present. Given the fixed source

location during Campaigns (i) and (ii), we expect each campaign to give us a highly directional

sample where the vast majority of detected nuclear recoils originate from neutrons coming directly

from the source. Multiple scattering and back scattering can occur, which will lead to nuclear

recoils whose true directions may not directly point back to the source, but we expect these to be

minor effects. Table 6.1 summarizes the setup and measurements recorded during each of the three

campaigns.

Figure 6.1: Lab set-up for low gain head-tail studies. We use a 252Cf spontaneous fission source to
generate neutron recoils for the TPCs. We record around one week of data both for the source-on-lid
sample and source-on-bottom sample, and about two weeks of background “no source” data.

Before recording data, we calibrate the charge scale of the TPC using the same procedure

detailed in Chapter 4.3 and obtain a threshold of around 2100 e and a saturation limit of around
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Campaign
Meas.

time [h]
Source

location
Expected φ
hemisphere

Fiducial
events

Identified
nuclear recoils

Identified
He recoils

Identified
C/O recoils

(i) 145 Lid − 129,775 2,406 1,348 1,058

(ii) 185 Bottom + 159,947 2,370 1,311 1,059

(iii) 337 None Uniform φ 19,134 36 30 6

Table 6.1: Summary of data collection runs. In the absence of the neutron source during campaign
(iii), we expect neutron directions to not have a preferred φ hemisphere. With the source incident
on the lid (bottom) of the TPC, we expect measured recoils to, on average, point in the −xTPC

(+xTPC) direction, which corresponds to the negative (positive) φ hemisphere. The particle ID
procedure to determine the number of each recoil species is described in Chapter 6.2.

47 000 e. An 55Fe X-ray source is present inside the TPC which would nominally be used for an

absolute energy-scale calibration, however the operating gain in our TPC is low enough that the

majority of hits from 55Fe X-rays fall below threshold, making our energy resolution too poor for

events with this low of energy. We instead perform a comparison between simulated and measured

He recoils to determine our gain and thus our energy scale. While we describe the process of

determining the gain in Chapter 6.3, we note here that we found our gain to be 910 and use that

for all event selections and analyses in this chapter.

6.2 Data processing and event selection

After calibrating the TPCs, we record data and process our data using the same procedure described

in Chapters 3 and 4. We start by applying fiducialization cuts where we reject all events that

contain any pixel hits along the outer perimeter of the FE-I4 and then make further nuclear recoil

selections based on event energy and length. Figure 6.2 shows the energy versus length distribution

of recorded events during Campaign (i) (source-on-lid), with the nuclear recoil selection boundary

used in all three Campaigns drawn in red. All events in the gray shaded region below the red

boundary are rejected as background. The right panel in this figure is a zoomed in version of

the left panel, where we observe that below 12 keVee it is difficult to distinguish between X-ray

backgrounds and nuclear recoils. We thus set a minimum signal threshold of 12 keVee and define

additional quadratic selections to ensure a relatively pure sample of nuclear recoils with minimal

stray noise hits.

Next we wish to exclude the less-directional C and O recoils. Given the approximate quadratic

dependence of track energy versus length in the energy regime shown in Figures 6.2 and 6.3, we

draw the constant selection boundary shown in Figure 6.3 of E/`2 = 19.5 keVee/mm2 and classify

all events below this boundary as He recoils and all events above this boundary as C or O recoils.

The right panel of this figure shows our final He recoil sample for Campaign (i) in blue and the

rejected C and O sample in orange. We apply this same selection procedure in Campaigns (ii) and
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Figure 6.2: Event energy versus length along the principal axis during Campaign (i).

(iii).

6.3 Neutron beam simulation and gain determination

We use the ParticleGun module in Geant4 to generate two samples of simulated neutrons mimicking

the geometry of Campaigns (i) and (ii). In both simulation campaigns, we simulate a neutron beam

where neutrons are shot in a cone of width 3◦ in both θ and φ to approximate the collimation of

neutrons emitted from the 252Cf source. We did not measure the source location or diameter of

the opening on the actual source, so we do not expect our estimation to be accurate. In both

campaigns, the beam vertex is located at zTPC = 8.0 cm, yTPC = 0.84 cm, and in Campaign (i),

the xTPC position corresponds to just outside of lid of the TPC and in Campaign (ii), the xTPC

position corresponds to just outside of the bottom plate of the TPC. The energy spectrum of the

neutron beam does not match the energy spectrum of the shielded 252Cf source, so we expect there

to be some substantial differences in overall head-tail performance due to differences in the recoil

energy spectra, but assuming we select a relatively pure sample of He recoils in measurement,

when we compare the head-tail performance versus energy of measurement and simulation, we

expect simulation to be fairly representative of measurement, as we only keep truth He recoils in

simulation.

To calibrate gain, we generated several samples of simulated He recoils at various gains and

selected the gain where simulated dE/dx distributions approximately match. Figure 6.4 shows

comparisons of the energy versus length distributions of simulated and measured nuclear recoils

with the Campaign (i) setup assuming a gain of 910 both in measurement and simulation. We find

that these distributions approximately agree, so we freeze our gain at 910 in both measurement and

simulation. We apply the same recoil selection boundary used on measurement to our simulation
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Figure 6.3: Discriminating between He recoils and C/O recoils. Left: E/`2 versus ` for all recoils
satisfying our initial X-ray rejection selections. Recoils below the red boundary line are the He
recoils we keep in this analysis. Right: Same events as the left panel plotted as an E versus `
distribution. Events below the red boundary in the left panel are identified He recoils (blue) and
events above the red boundary in the left panel are identified C and O recoils (orange).

Figure 6.4: Energy versus length along principal axis distributions of measured and simulated
tracks. Both measurement and simulation assume a gain of 910. Simulated tracks include only
truth He recoils.
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sample to make as direct of a comparison between measurement and simulation as we reasonably

can.

6.4 Processing 3DCNN inputs

We process both measured and simulated events as 2-tuples containing (i) a (34× 170× 34) sparse

Pytorch tensor, and (ii) the associated class-label of the event. We choose the same voxelgrid

dimensions as what was used in Chapter 5.6 so that we can evaluate head-tail for both the measured

and neutron-beam simulated samples using the same 3DCNN that was already trained on isotropic

simulated α recoils. We do not perform any additional training of the 3DCNN. Like before, we

assign a label of 1 (0) to simulated events with true vector directions pointing in the negative

(positive) φ hemisphere. Since we do not know the true direction of measured recoils, we assign

a null class-label at this stage. After forming these 2-tuples for all events, we pass each of these

2-tuples into the pre-trained 3DCNN for head-tail assignment.

6.5 Results

Figure 6.5 shows the 3DCNN output class-assignment probability distributions of our direction-

specific measured and simulation samples. Looking at the bottom row of this figure, we observe the

expected behavior in both measurement and simulation, where the output probability distribution

strongly peaks at 1 for the Campaign (i) sample and peaks at 0 for Campaign (ii). Since we

recorded so few background events over the 2 week Campaign (iii), we plot these distributions on a

logarithmic scale in the top row of this figure so we can compare the background distribution with

the source distributions. In the top left panel of this figure, we observe that the background sample

is roughly symmetric as we would expect from an isotropic background and unlike the asymmetric

source-on-lid/source-on-bottom distributions, indicating that the 3DCNN is correctly identifying

the source when it is present. Comparing measurement and simulation, we see that there are

proportionally more events with uncertain classifications (p− near 0.5) in measurement than in

simulation. This is most likely due to differing nuclear recoil energy spectra between measurement

and simulation, where there is a larger proportion of higher energy events in simulation than in

measurement. Despite this difference between simulation and measurement, the 3DCNN still does

its job well and identifies the source location in the output probability distributions with strong

peaking.

We’ve identified that the 3DCNN statistically points back to the correct source location (some

examples of tracks are shown in Figure 6.6), so next we attempt to quantify the head-tail perfor-

mance of the 3DCNN evaluated on measurement. While we don’t know the true recoil direction in

measurement, we expect the majority of recoils observed in the TPC when the source is incident

on the lid (bottom) to be in the negative (positive) φ hemisphere. With this in mind, we come up
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Figure 6.5: 3DCNN head-tail assignment for measured (left) and simulated (right) recoils. Individ-
ually the source-on-lid and source-on-bottom samples have strongly asymmetric p− distributions
in both measurement and simulation with the probabilities peaking in the expected direction of
recoils coming from the source.

Source
location

Lower limit
correctly assigned

measured events [%]

Lower limit
correctly assigned

simulated events [%]

True correctly
identified simulated

events [%]

Correctly assigned
simulated events

satisfying lower-limit
criteria [%]

Lid 69.1± 2.5 80.6± 0.5 87.6± 0.5 98.6± 0.6

Bottom 83.8± 2.8 87.4± 0.5 90.2± 0.5 99.4± 0.6

Table 6.2: Columns from left to right: (i) Side of the TPC that the 252Cf source was incident
on. (ii) Percentage of measured events that are labeled as correctly assigned using our lower-limit
assignment convention of p− > 0.5 (p− < 0.5) for the source-on-lid (bottom) sample. (iii) Same
as (ii) but for our simulated samples. (iv) True percentage of correctly assigned simulated events.
(v) Percentage of simulated events satisfying our lower-limit criteria p− > 0.5 (p− < 0.5) for the
source-on-lid (source-on-bottom) sample with assigned directions that match truth. See text for
more complete description of this column.
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Figure 6.6: 3D event display of measured tracks with head-tail assigned by the 3DCNN [93]. Tracks
[i]-[iii] and [vi] come from Campaign (i) (source-on-lid sample) and the remaining three tracks come
from Campaign (ii). The vectors overlaid on top of each track have directions corresponding to
φSVD. We note that angular resolution is poor below ∼40 keVee so the most important feature is
whether these vectors point toward +x or −x. The track energy and 3DCNN output probabilities
are labeled at the top of the figure. For tracks from Campaign (i), the listed probability is p− and
for tracks from Campaign (ii), the listed probability is p+. The track locations have been translated
so that they all fit in a single display, but have otherwise not been altered.
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with a lower-limit head-tail performance estimate by defining any event in the source-on-lid sample

to be correctly assigned if p− > 0.5 and any event in the source-on-bottom sample to be correctly

assigned if p− < 0.5. Table 6.2 describes the breakdown of these samples which we walk through

in detail. Labeling the columns of this table from left to right as (i)-(v), comparing columns (iii)

and (iv) tells us that our lower-limit head-tail selection criteria are indeed lower limits, as they

produce lower head-tail assignment efficiencies than the true head-tail efficiencies. Furthermore, as

is evident from Figure 6.5, there are proportionally more measured events that the CNN identifies

with p− in the neighborhood 0.5, so we observe a smaller fraction of events labeled with correct

head-tail assignment in column (ii) than in column (iii), meaning these lower-limit assignments in

measurement will in general show worse head-tail performance than they do in simulation. Column

(v) gives the percentage of simulated recoils from the source-on-lid (bottom) sample with correctly

assigned head-tail direction when the lower-limit selection criteria is applied. For instance, of the

simulated source-on-lid (source-on-bottom) recoils satisfying p− > 0.5 (p− < 0.5), 98.6% (99.4%)

of them have head-tail directions that match truth, suggesting this lower-limit selection criteria to

be an excellent head-tail assignment criteria for evaluating performance in the absence of knowl-

edge of the true recoil direction. We also notice that across the board, we get a lower correct

assignment rate for the source-on-lid sample than the source-on-bottom sample. Similar to what

we observed in Chapter 5.6, this asymmetry in performance goes away at higher energies, but to

avoid biasing our low energy results within individual Campaigns, we combine the source-on-lid

and source-on-bottom samples when evaluating overall performance versus energy.

We start by evaluating our overall performance with ROC curves. As before, we generate these

ROC curves by determining εht at εHe’s resulting from selections on w given in Equation (5.6). Here

εht for the measured samples is defined by the fraction of events with p− > 0.5 in the source-on-lid

sample and p− < 0.5 in the source-on-bottom sample (Figure 6.7). We produce the same curve

for simulation in the right panel of Figure 6.8, as well as the ROC curve that corresponds to the

true εht. Figure 6.9 directly compares the ROC curve generated by measurement and the two ROC

curves generated using simulation. Consistent with Table 6.2, we find that the lower-limit measured

head-tail efficiency is lower than in simulation at εHe = 1.0, but as we increase the requirement on

w, its performance eventually catches up to and surpasses the lower-limit simulation estimate.

Figure 6.10 compares the head-tail recognition efficiency of these samples as a function of

energy. As before, the points within each energy bin show the head-tail efficiencies at 50% He-

recoil efficiency of the sample within the given bin. Despite modest measurement statistics in most

energy bins, we find acceptable agreement between εht lower-limit performance in our combined

(source-on-lid with source-on-bottom) measured and combined simulated samples. The trend is as

expected in both the measurement and simulation lower-limit curves where head-tail performance

in general increases with energy.

Comparing to other experiments, in 2008, the DRIFT-IIc detector using 40 torr of CS2 reported
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Figure 6.7: Left: w distribution of measured events. Right: ROC curve with εht defined using the
lower-limit correct assignment criteria described in the text.
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Figure 6.8: Same as Figure 6.7 but for simulation. The ROC curve with lower εht uses the lower-
limit correct assignment criteria, and the ROC curve with larger εht shows the true head-tail
recognition efficiency.
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Figure 6.9: Direct comparison of the three ROC curves generated in Figures 6.7 and 6.8.
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Figure 6.10: “Grand summary” comparison of head-tail assignment performance versus energy.
Energy bins have width 20 keVee and for the events within each energy bin, we make selections on
w corresponding to 50% He recoil efficiency and compute the head-tail recognition efficiency.
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head-tail sensitivity for sulfur recoils down to about 50 keV [27], and in 2020, the NEWAGE-03b

detector filled with 76 torr of CF4 gas, reported head-tail efficiencies of (53.4±0.5)% for 50-100 keV

recoils, (57.7± 0.4)% for 100-200 keV recoils, and (65.1± 0.5)% for 200-400 keV recoils [28]. Both

of these experiments used low pressure and low diffusion gas mixtures which are more favorable

than our 1 atm He:CO2 gas mixture for head-tail sensitivity. Nevertheless, our 3DCNN results are

a considerable improvement over the DRIFT-IIC and NEWAGE-03b head-tail performance with

lower-limit estimates of εht = (63.3 ± 4.3)% at 100% He recoil efficiency and εht = (73.7 ± 5.2)%

at 50% He recoil efficiency for 50-100 keVee recoils. Furthermore, at 50% He recoil efficiency, we

find 18 He recoils between 39 keVee and 49 keVee and determine a lower-limit head-tail recognition

efficiency of (62.1 ± 11.4)%, indicating the first (albeit barely) statistically significant evidence of

event-level head-tail recognition for sub-50-keVee nuclear recoils.
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CHAPTER 7
HEAD-TAIL IDENTIFICATION PERFORMANCE AT HIGH

GAIN: SIMULATION AND EXPERIMENT

7.1 Introduction

There isn’t enough statistical structure in keV-scale recoil tracks for head-tail recognition at low

avalanche gain, as a significant portion of charge in the recoil track will fall below the readout

threshold. With the atmospheric pressure He:CO2 mixture used by the BEAST TPCs, we need to

be operating at near single electron efficiency to have any chance of observing the head-tail effect in

keV-scale recoils. Even at single electron efficiency, there are a number of challenges to overcome in

order to observe the head-tail effect. For instance, sub-10-keV He recoils at 1 atm gas pressure are

short enough in length that even over relatively short drift lengths, the tracks diffuse enough that

we have little to no angular resolution by the time the track is detected. This is further complicated

by the effect of the pixel electronics shaping time, which turn such lowest-energy recoils into bowl-

like shapes (Figure 6.6). Traditional principal axis-based methods for assigning axial direction and

for determining head-tail assignment will break down in that regime. Nevertheless, at high gain,

detected recoils in this energy regime register enough pixel hits that it may be possible for a 3DCNN

to reliably identify head-tail. In principle, a 3DCNN can learn to account for biases due to effects

such as diffusion and shaping electronics. If the 3DCNN approach is successful, the benefits would

not only be improved performance, but also much easier development for the end-user compared to

traditional deconvolution approaches that must be custom-tailored to gas conditions and electronics

settings.

7.2 Experimental setup, calibrations, and simulation

To test for head-tail sensitivity at high gain, we use the same experimental set up as with low gain

and again run three campaigns: Campaign (i) with the 252Cf fast neutron source incident on the lid

of the TPC, Campaign (ii) with the source incident on the bottom of the TPC, and Campaign (iii)

with no source present. We take careful consideration of the location of the hole where the neutron

beam from the source exists the plastic shield and set it at zTPC = 8.0 cm. In practice there is

a trade-off between saturation and diffusion, where with more diffusion (longer drift lengths) we

expect relatively fewer saturated pixels, so while angular resolution may improve with the source

opening closer to the charge readout-plane of the TPC, our energy resolution would suffer due to

larger fractions of saturated pixels in events. We found that a drift length of zTPC = 8.0 cm led to

little or no saturation for 6 keVee recoils at our operating gain (determined in Chapter 7.2.2).
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7.2.1 Charge calibration

The finite dynamic range of the FE-I4 readout is a serious consideration when operating at high

gain. Lowering the FE-I4 threshold by a factor of two, for instance, should lead to a proportional

lowering of the lowest gain that corresponds to single electron efficiency. A factor of two drop in

gain, then, leads to a substantial decrease in fractions of saturated pixels we would observe for

events of a given true recoil energy. Lowering the pixel threshold, however, comes at the cost of an

increase in the fractional uncertainty of the threshold in each pixel due to noise.

Figure 7.1: Top: Row versus column of the FE-I4 pixel grid with the color scale showing the
threshold of each pixel. Middle: Threshold charge distribution with a fitted Gaussian profile. The
variance in threshold is in general low. Bottom: Threshold distribution plotted versus 1D pixel
number.

Figures 7.1 and 7.2 show the threshold and noise distributions for all pixels about two months

after tuning the chip to a target threshold of 625 e per pixel. We see that the average threshold

over all pixels is about 3% lower than this target. Comparing the threshold charge distribution

and noise charge distribution histograms in these figures, we find that the mean noise is about 30%
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of the mean threshold. Ideally we would want to have a higher threshold to noise ratio (we had

> 10 for the Phase 2, Phase 3, and low gain head-tail studies), but we hope this trade-off is worth

lowering the gain required for single electron efficiency.

Figure 7.2: Same as Figure 7.1 but for noise distribution. The mean noise is about 30% of the
mean threshold leading to a large uncertainty in threshold due to noise.

When tuning the FE-I4, we attempt to tune to the highest possible saturation limit to maximize

the dynamic range of our readout. When adjusting the target dynamic range, we found that

lowering the threshold also caused the saturation limit to lower, despite attempting to tune to a

saturation limit of 50 000 e. Figure 7.3 shows the result of measuring the mean and standard error

of TOT codes over 100 injections at each of 70 distinct charge steps. We see that injected charge

corresponding to TOT = 13 (saturation limit) is below our target of 50 000 e, but conclude this is

acceptable since the lower gain resulting from the lower threshold improves our energy resolution

at single electron efficiency over further increasing the raw saturation limit.

To calibrate our charge (TOT) scale, we perform a bicubic spline interpolation over all data

points in Figure 7.3, and then record the interpolated electron charge at each integer TOT step.
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Figure 7.3: Average TOT response to 100 charge injections in all pixels over 70 distinct charge
steps (charge steps are represented by points). The vertical red line shows our threshold which is
what we set TOT = 0 to be.
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The interpolated curve along with the charge threshold is shown in Figure 7.4. Notice that the

charge difference corresponding to pixel hits registering TOT = 0 and TOT = 1 is very small. As

TOT increases, the difference in charge between subsequent TOT values also increases, so our TOT

to charge response is not linear. This was also the case in all previous studies.
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Figure 7.4: Bicubic spline interpolation over the points shown in Figure 7.3 shown as a black line.
The charges where the interpolated curve matches an integer TOT code are what we set as the
calibrated charge for a given integer TOT code.

7.2.2 Gain calibration

Our goal is operate near single electron efficiency with a calibrated energy scale. Before deciding

our target gain point, we first need to ensure that the gain is stable. We evaluate gain stability

by performing 15 min runs at constant GEM high voltage settings, where we alternate between

exposing the active volume of the TPC to X-rays from an 55Fe source and not. To control the
55Fe source exposure, we engineered a remote controllable Delrin shutter that we close every other

run, allowing us to assess the purity of the 55Fe X-ray sample when the shutter is open so that

we can use its energy spectrum to assess gain stability. The goal is to achieve gas quality where

the effective gain (which includes reduction due to gas impurities) versus time has plateaued after

sealing the TPC vessel. Performing 115 hours of such runs with the TPC sealed and our 70:30

mixture of He:CO2 gas flowing at 12.5 sccm, we achieve > 99% of the predicted maximum gain

after about 96 hours of operation. The details of this gain stability study are in Appendix B.

After we have flowed gas long enough to reach a sufficiently stable gain, we then use the rate of
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cosmic rays observed over fixed time exposure runs at various GEM high voltage settings (which

translate to different uncalibrated gains). Since cosmic rays are minimally ionizing, we plot the

average rate of cosmic rays as a function of effective gain, and define the minimum single electron

efficiency gain point to be the lowest gain where this distribution is sufficiently close to the nominal

maximum cosmic ray rate.
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Figure 7.5: Average cosmic rate over 30 data collection periods versus uncalibrated gain. The
FE-I4b threshold on average is aroun SI600e. Pass 1 starts with runs at low gain and dials high
voltage settings gradually upward to high gain. Pass 2 starts at high gain and ramps high voltage
settings down to lower gain. The continuous curves are fits to these data using Equation (7.1). The
vertical dot-dashed line shows the gain point of Guncal,set = 8170 that we determined to correspond
to 95% of the cosmic ray rate predicted at single electron efficiency.

Figure 7.5 shows the results of this study. To control for gain variations due to any residual

time dependence in the gain due to variations in gas-purity, we perform two passes of runs: One

pass where we start with low gain and gradually increase the gain, and a second pass where we start

at high gain, and gradually decrease the gain. Each data point shown in this figure is the mean

cosmic ray rate recorded over 30 minutes with the 55Fe source shutter closed. The uncalibrated

gain, Guncal shown on the horizontal axis of this figure is determined using the figure of merit

(B.1) described in Appendix B. To determine our single electron efficiency gain point, we fit an

exponential of the form

R(Guncal) = a
(

1− e−b(Guncal−c)
)
, (7.1)

to our distribution of cosmic ray rates, R versus Guncal. Fit parameter a represents the nominal
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cosmic ray rate at single electron efficiency and fit parameter b represents the rise time of cosmic

ray rates versus gain. We set our near-single electron efficiency gain point to be

Guncal,set =
3

b
, (7.2)

as 3/b corresponds to (1−1/e3) ≈ 95% of the nominal maximum cosmic ray rate. We choose to use

the fit to Pass 2 to set our uncalibrated gain to Guncal,set = 8170 (shown as the vertical dot-dashed

line in Figure 7.5), as the difference in gain between Passes 1 and 2 is effectively negligible, but

Pass 2 predicts a slightly higher gain.

Now we determine our calibrated gain using a sample of 55Fe X-rays collected over 8 hours at

Guncal,set = 8170. We follow a variant of the procedure described in Appendix B to determine the

GEM divider and field cage input voltages needed to give us this target gain. The energy spectrum

of 55Fe X-rays peaks at 5.9 keV in He:CO2 [76], so lining up the peak of the uncalibrated energy

spectrum at Guncal,set = 8170 with 5.9 keV provides an absolute energy calibration. To ensure that

this energy calibration is accurate, we first need to test that there isn’t a significant portion of

saturated pixels in these X-ray tracks.

Figure 7.6: Left: Uncalibrated energy versus track length distribution of 55Fe X-rays recorded over
this 8 hour period. Right: Normalized TOT distribution of all pixel hits from this sample. The
low frequency of TOT = 13 hits suggests that events on average do not have significant fractions
of saturated pixel hits.

From Figure 7.6 we observe that the normalized TOT distribution (right panel) over all events

in the sample shown in the left panel of the figure doesn’t have an excessive peak at TOT = 13,

suggesting that we are not limited by saturation in this X-ray sample. Additionally, since we are
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operating close to single electron efficiency, we expect that very few hits after amplification will fall

below our energy threshold, suggesting that we’re operating at near optimal energy resolution for

this gain calibration. We finally determine our calibrated gain, G, by identifying the peak of the

uncalibrated energy spectra (red vertical line penetrating through the red histogram in Figure 7.7),

and shifting that peak to line up with 5.9 keVee (blue vertical line penetrating through the blue

histogram in Figure 7.7). Doing this, we find a calibrated gain of G = 13400± 400.
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Figure 7.7: Uncalibrated (red) and calibrated (blue) energy spectrum of the 55Fe X-rays. The pale
red and blue vertical bands show the uncertainty in the peak location.

7.3 Simulation

We use the same procedure described in Chapter 5.2 to generate samples of neutrons mimicking the

geometry of Campaigns (i) and (ii). Particle identification for low energy recoils is considerably more

challenging than for the higher energy recoil sample we considered in our low gain study. As a result,

we also aim to train a 3DCNN to identify recoils and reject X-ray backgrounds, so we simulate a

sample of X-ray backgrounds. To generate this background, we use the basf2 implementation of the

Geant4 ParticleGun module to fire electrons with a uniform momentum distribution isotropically

from the center of the fiducial volume of the TPC. We additionally generate an isotropic sample

of α tracks to augment our neutron beam simulation sample, so that we don’t bias our head-tail

training with just directional neutron-recoil samples. All recoil samples are drifted and digitized

using the digitizer introduced in Chapter 4.2. We digitize using the parameters shown in Table 7.1.

We use a gain of 15,000 instead of 13,400 and also add a constant offset of 2600 e to the TOT to

charge mappings used for measured recoils to get better agreement between measured and simulated
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Gas
[70%:30%]

W
[eV]

Gain
~vd

[µm/BCID]
(σT , σL)

[µm/
√

cm]
(σT,GEM, σL,GEM)

[µm]

He:CO2 35 15,000 216.25 (134.8, 128.2) (143,97)

Table 7.1: Digitization parameters for the high gain head-tail simulation campaign. σT,GEM and
σL,GEM represent the transverse and longitudinal point resolution of the readout plane, excluding
the pixel chip. The diffusion parameters were computed using Magboltz and should be more
representative of measurement than the diffusion coefficients used in Table 5.1.

dE/dx distributions (details in Chapter 7.4 and Figure 7.18).

Ideally we would train our head-tail 3DCNN classifier using isotropic He, C, and O recoils,

and then evaluate the trained 3DCNN on a directional neutron-recoil sample like what we did in

Chapter 5, but the ParticleGun module we used to generate events does not generate heavy ions,

so the only way we were able to simulate C and O recoils out of the box was by simulating neutron

beams. Reliably rejecting C and O recoils for the event samples in this study is very difficult, so

we cannot simply ignore C and O recoils in our 3DCNN head-tail training and reject those events

as backgrounds at the analysis stage like we did in Chapter 5.

7.3.1 Electron rejection on simulation

Data samples and processing for 3DCNN

We combine all recoils from the samples listed in Table 7.2 (and plotted in Figure 7.8) into a single

data set and shuffle the events so that they are randomized when fed into the 3DCNN. The true

nuclear recoil signal to X-ray background ratio in our measured sample is considerably lower than

what we generated for MC, but as long as the 3DCNN has adequate statistics of both to learn

features that discriminate recoil constituents well, then differences in signal to noise ratios between

simulation and measurement shouldn’t matter. Figure 7.9 shows the reconstructed energy versus

length distribution of these simulated events. The highest dE/dx band is a mixture of all three

nuclear recoil species that are difficult to distinguish (we’re interested in distinguishing He recoils

from C or O recoils) using selections on E versus `. The lower dE/dx band is primarily composed

of electron recoils from X-rays. At energies below 4 keVee, the nuclear recoil and X-ray bands bleed

together and are indistinguishable using selections on energy and length.

Like before, we store the events as 2-tuples where the first entry is a (34 × 170 × 34) sparse

PyTorch tensor, and the second entry is the class-label of the event. For event classification, we

assign labels of 0, 1, and 2 for truth electrons, truth He recoils and truth C or O recoils, respectively.

3DCNN architecture and training

We use a nearly identical architecture for our event classification 3DCNN (Table 7.3) as our previous

3DCNNs used for head-tail assignment, with the main difference being that we now have three
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Recoil species Simulation sample # Events

e Isotropic 692,139
He Isotropic 101,739
He Source-on-lid 16,099
He Source-on-bottom 15,663

C/O Source-on-lid 120,138
C/O Source-on-bottom 117,845

Table 7.2: Number of simulated recoils generated for each recoil constituent and each generation
procedure. Reconstructed ionization energy spectra for these samples are shown in Figure 7.8.
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Source-on-Lid C/O Recoils
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Figure 7.8: Left: Reconstructed ionization energy spectra of simulated e, He, and C/O recoils. The
neutron-beam samples show a combination of source-on-lid and source-on-bottom samples. Right:
Neutron-beam reconstructed ionization energy spectra with the source-on-lid and source-on-bottom
samples distinctly shown. The energy spectra of the source-on-lid and source-on-bottom samples
appear consistent. Truth ionization energies were not logged for the electron recoil sample, so we
opt to plot reconstructed ionization energies for all samples.
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Figure 7.9: Reconstructed energy versus length of all simulated recoils in the high-gain campaign.

Layer
#

Filters
Filter size S P

# Learnable
parameters

Dropout Output shape

ConvBlock 1 8 (2× 2× 2) (1,2,1) 0 88 0.03 (8× 33× 85× 33)
ConvBlock 2 16 (3× 3× 3) (1,2,1) 0 3,504 0.03 (16× 31× 42× 31)
ConvBlock 3 32 (2× 3× 2) 1 0 6,240 0.03 (32× 30× 40× 30)

AvgPool 32 (2× 2× 2) 2 0 –– –– (32× 15× 20× 15)
ConvBlock 4 64 (2× 3× 2) 1 (1,0,1) 24,768 0.03 (64× 16× 18× 16)
ConvBlock 5 32 (3× 3× 3) 1 (1,0,1) 55,392 0.03 (32× 16× 16× 16)

AvgPool 16 (2× 2× 2) 2 0 –– –– (32× 8× 8× 8)
ConvBlock 6 16 (2× 2× 2) 1 0 4,144 0.03 (16× 7× 7× 7)
ConvBlock 7 8 (2× 2× 2) 1 0 1,048 0.03 (8× 6× 6× 6)

FC1 –– –– –– –– 110,656 0.05 (64× 1)
FC2 –– –– –– –– 1,040 0.05 (16× 1)
FC3 –– –– –– –– 51 –– (3× 1)

Table 7.3: Architecture of the 3DCNN used for particle ID at high gain. Note the similarity to
the architecture of the 3DCNN used for head-tail assignment (Table 5.2) except FC3 now has three
output classes instead of two, and the dropout used in the ConvBlocks was reduced to 0.03.
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output classes instead of two. Applying a SoftMax function to the model output now gives us

output probabilities of pe, pHe, and pCO, which are the model classification probabilities of electron

recoils, He recoils, and C or O recoils, and satisfy pe +pHe +pCO = 1. We split our combined sample

that includes all recoil constituents into a training set with 654,256 events, a validation sample with

150,952 events, and a test sample with 214,572 events and train using stochastic gradient descent

(see Chapter 5.6.4 for a description of how this works) with minibatch updates of size 128 and

cross-entropy loss and use the same early stopping criteria as before.

Results

Figure 7.10 shows comparisons of distributions of length, and the three output probability hy-

potheses, pe, pCO, and pHe for the test set. We immediately see that the 3DCNN classifier gives

significantly stronger separation with much higher signal yields than our traditional method of

event selection on track length.

To further quantify event selection performance, we introduce a rejection factor, R, which we

define as

R =
Nbg

N ′bg

, (7.3)

where Nbg is the total number of background candidates in a sample and N ′bg is the number of

background candidates that remain after a particular selection. The top panel of Figure 7.11

shows the results of electron rejection factor, Re versus energy, where in each energy bin, we make

selections that lead to 50% nuclear recoil (mixture of He and C and O) efficiency. The blue points

use selections on pe and the gray points use selections on length. We find that electron rejection

performance is orders of magnitude better using the 3DCNN over length.

Ultimately, for head-tail studies, we’re interested in selecting maximally pure samples of He

recoils, so we next evaluate rejection factors Re and RCO for selections on pHe corresponding to

50% He recoil efficiency, which are shown in Figure 7.12. With these selections, we find that

electron rejection remains above 100 at all energies (red points) and find that CO rejection (blue

points) increases exponentially with energy. From these results, we anticipate that the fractional

compositions of CO and He in measurement may further limit directional sensitivity at low energies.

For instance, if we record a factor of 10 more C/O recoils than He recoils at 8 keVee, then even

after selections with the performance shown in Figure 7.12, N ′He/N
′
CO would be less than 0.5.

Nevertheless, if the 3DCNN event classifier performs remotely similar to our measured samples as

it does on simulation, then at higher energies, we should expect very high purity He-recoil samples.
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Figure 7.10: Truth recoil distributions of length and 3DCNN output probability hypotheses.
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Figure 7.11: Top: Electron rejection factor versus energy using selections that correspond to 50%
nuclear recoil efficiency. If a point is not shown on the plot, it means all electrons were rejected.
For instance, there are no blue points above 4 keVee, indicating that all electrons were rejected
using selections on pe corresponding to εHe = 0.5. Note: in the legend, LAPA stands for “Length
along principal axis” and is our metric for track length. Bottom: Number kept electrons, N ′e after
selections on length (gray) and pe (blue). The clear bars show the total number of electrons in the
energy bin.
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Figure 7.12: Rejection factors Re and RCO versus energy using selections of pHe that correspond
to εHe = 0.5 in each energy bin. The 8 and 10 keVee bins have all electrons rejected.

7.3.2 Head-tail on simulation

3DCNN architecture and training

We use the exact same architecture as our low gain head-tail classifier described in Table 5.2, except

we increase the random dropout from 0.05 to 0.15 in each of the convolutional blocks. Using this

higher dropout value led to better performance on the test set once the network was trained. We

speculate that the reason for this is because the features used for head-tail extraction are subtle

enough that with too low of a dropout, the network may pick up on misleading features that are

sub-optimal for head-tail classification. Increasing the randomized dropout increases the amount

of training iterations required before early stopping is triggered but it also reduces the chance of

overfitting.

When we evaluate high gain performance on measurement, we first feed our data through the

3DCNN trained for particle identification to obtain a pure sample of nuclear recoils and then assign

head-tail to the nuclear recoil candidate sample using a separate 3DCNN. Since we aim to reject all

backgrounds before evaluating head-tail, we train our high gain 3DCNN head-tail classifier using

only the He and C/O recoil samples listed in Table 7.2. We combine each recoil type into a single

set of data, shuffle the order of events, and then split the sample up into training, validation, and

test sets containing 232,177, 53,579, and 85,728 events, respectively. As with the low gain exercise,
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we process each event as a 2-tuple containing a (34× 170× 34) tensor and an associated class-label

corresponding to the φtruth hemisphere of the recoil track. We train the neural network using

stochastic gradient descent with minibatch updates of size 128 using cross-entropy loss, and the

same early stopping criteria as in Chapter 5.6. Applying a SoftMax function to the output gives

p− and p+ with the same definitions as before.

Results

Since our training sample was a mixture of an isotropic α-recoil sample with samples of neutron-

source simulation that include He, C, and O recoils, we evaluate our performance in three separate

samples labeled, “Isotropic”, “Source-on-lid”, and “Source-on-bottom”. Figure 7.13 shows the ROC

performance of He recoils. As a whole, we find that performance is biased favorably toward the

source-on-lid sample, which is evident both in the ROC curves and in Figure 7.14.

Figure 7.13: ROC curves for He recoil samples. Despite consistent recoil energy spectra between the
source-on-lid and source-on-bottom samples (Figure 7.8), we find that performance is asymmetric
and favors the source-on-lid sample.

We check for the same bias in our C/O recoil sample and find that the bias is even stronger in

favor of identifying source-on-lid for these recoils than for He recoils (Figure 7.15). In all cases, the

misclassification rates for events with high w = 2|p− − 1/2| is still very low, so this bias shouldn’t

pose a problem for events with high classification confidence.

We next evaluate performance as a function of energy using the same “Grand Summary” criteria

defined earlier. Namely, we partition our samples into energy bins of width 2 keV with bin centers

ranging in steps of 2 keV between 1 keV and 35 keV. We do this both for our reconstructed energies

(in keVee) and truth recoil energies (in keVr). Then, within each energy bin, we compute εht at

selections on w that correspond to a nuclear recoil efficiency of 50%. We do this separately for

the set of only He recoils, the set of only C/O recoils, and the set of all nuclear recoils combined.

The results are shown in Figure 7.16, where for He recoils, we find head-tail efficiencies in excess

of 80% down to 9 keVr and non-negligible event-level head-tail sensitivity down to 3 keVr. The
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Figure 7.14: Illustration of the head-tail assignment asymmetry on simulated He recoils with re-
constructed ionization energies between 10 keVee and 20 keVee. The training sample is roughly
symmetric in terms of number of events with truth direction in each φtruth hemisphere, but the
trained 3DCNN misassigns more events for the source-on-bottom sample than the source-on-lid
sample.

Figure 7.15: ROC curves for C/O recoil samples. Like with the He sample, despite nearly identical
recoil energy spectra between the two samples (Figure 7.8), we find that performance is asymmetric
and favors the source-on-lid sample.
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Figure 7.16: 3DCNN-determined head-tail recognition efficiencies on simulated nuclear recoils ver-
sus reconstructed nuclear recoil energy (pale colors; units in keVee) and true ionization energy (bold
colors; units in keVr). In each sample, we compute w = 2|p− − 1/2| that corresponds to a nuclear
recoil efficiency of 50% and compute εht after these selections.

136



3DCNN event selection performance for this high gain sample suggests that we should be able to

obtain a reasonably pure sample of He recoils in this energy regime. At minimum, these results

suggest that in the limit where we cannot distinguish He recoils from C/O recoils, our head-tail

recognition efficiency will be about 66% at 9 keVr (black line in Figure 7.16). Assuming our ability

to distinguish He recoils from C/O recoils is better than chance like we have found, then we should

expect considerably higher head-tail efficiencies that approach the He recoil-only performance. All

together, if the results on measurement are at all similar to our 3DCNN event selection and head-

tail classification performance holds on measurement, then this will be the first demonstration of

directionality for keV-scale recoils.
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Figure 7.17: Comparison of 3DCNN-determined head-tail recognition efficiencies on simulated He
recoils at low gain and high gain. εht is computed using selections on w that correspond to 50%
He recoil efficiency in each bin. The high gain results use the simulated isotropic He recoil sample
described in this chapter and the low gain results use the simulated isotropic He recoil sample with
digitization settings described in Chapter 5.

Figure 7.17 shows a direct comparison of head-tail assignment performance for the He recoil

sample considered here versus the low gain He-recoil sample evaluated in Chapter 6. Both samples

are evaluated with the appropriate 3DCNN. We find that at low gain, head-tail performance only

starts exceeding a coin flip at 21 keVr and doesn’t pass the 70% efficiency mark until 35 keVr. On

the other hand, at high gain, head-tail performance exceeds a coin flip at as low as 3 keVr and
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exceeds 70% by 7 keVr, verifying that high gain operation is necessary for observing the head-tail

effect for sub-10-keVr nuclear recoils. We remind the reader that low gain head-tail recognition

on measurement was not quite as performant as on simulation, so while these high gain results on

simulation show promise, we must verify that they generalize to measurement.

7.4 Experimental results

Here we evaluate the results of both the high-gain particle ID 3DCNN and the head-tail assignment

3DCNN on measurements from all three campaigns. We recorded 166 hours of high-gain data during

Campaign (i) (source-on-lid), 186 hours during Campaign (ii) (source-on-bottom), and 357 hours

during Campaign (iii) (background data with no source present). In all of these campaigns the

internal 55Fe source shutter was closed, so we expect very few X-rays leaking from this source.

7.4.1 Electron rejection

Figure 7.18: Observed recoil energy versus length distributions in each of the three measurement
campaigns (magenta). The leftmost panel also shows a 2D histogram of simulated recoils with a
logarithmic colorscale to highlight the agreement in dE/dx between measurement and simulation.

Figure 7.18 shows the distribution of measured recoils for each of the three campaigns. The

leftmost panel shows measured points (in magenta) overlaid on top of a 2D histogram of simulated

events (histogram uses a logarithmic colorscale), where we observe dE/dx agreement in both the

nuclear recoil and X-ray bands. Moving forward, we restrict our event range to E < 30 keVee, as

we did not train our 3DCNN on higher energy events than this. Identifying events in the region

where nuclear recoils and electron recoils are indistinguishable in terms of dE/dx is challenging.

We opt to select signal candidates using selections on pe corresponding to 50% nuclear recoil

efficiency on our simulated sample at 8 keVee. Figure 7.19 shows events identified as nuclear recoils

with these selections in orange overlaid on top of the rest of the measurements in blue. At higher

energies, we maintain high nuclear recoil efficiencies, however around 8 keVee, our efficiency appears
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to be much lower than 50%, indicating that performance on simulation doesn’t generalize well to

measurement. Nevertheless, we continue with these selections, as dE/dx profile of the selected

recoil sample appears to minimally overlap with the X-ray background band. A few events labeled

as nuclear recoils with these selections appear suspect due to their relatively longer length and lower

energy, however it’s possible that these events are correctly identified nuclear recoils that contain

noise hits, so we do not rule them out at this stage.

Figure 7.19: Selected signal sample of nuclear recoil candidates (orange) overlaid on top of all
measured events (blue).

7.4.2 Head-tail assignment

We now use our 3DCNN classifier to assign head-tail to recoils satisfying these pe selections. Fig-

ure 7.20 shows the p− distributions for all three measurement campaigns at three different energy

ranges. In the highest energy case Ereco < 30 keVee where we would expect the most peaking toward

the source locations, we find little to no head-tail performance. Indeed, we would expect the source-

on-bottom sample to peak at p− = 0, but we instead find that both source orientations peak at the

p− = 1, indicating that the model is not well enough trained to pick out the true source directions

in measurement. This appears to be an example of the sim2real gap in artificial intelligence where

model performance does not translate effectively between simulation and measurement.

7.5 Discussion and conclusions

The 3DCNN classification performance for both event selection and head-tail identification on

simulation beats out any technique in the current literature, but unfortunately this performance
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Figure 7.20: Distribution of output probabilities that the events lie in the negative φtruth hemisphere
(p−). We find little difference in the source-on-lid and source-on-bottom samples indicating that our
trained 3DCNN does not provide meaningful head-tail assignment performance on measurement.

does not yet generalize to measurement. We believe that our performance on simulation shows

promise for 3DCNNs becoming a standard tool for directional DM analyses in 3D recoil-imaging

TPCs, however more work is needed to ensure that performance generalizes to measurement. There

are a number of features that simulation doesn’t model accurately. One such example is the net

charge distribution over all events. Though we observe dE/dx agreement between measurement

and simulation, the charge distributions of events that the 3DCNN uses to make classifications do

not agree over a fixed event length range (2.0 cm < ` < 2.2 cm shown in Figure 7.21). By extension,

the number of pixel hits per event at a given energy and length range do not agree, suggesting

that the statistical information the 3DCNN uses for classification may differ considerably between

measurement and simulation.

The model complexity of 3DCNNs is a double-edged sword. On one hand the model complexity

allows the network to find subtle correlations and use these to classify events that would not be

possible to reliably classify with a simpler model, but on the other hand, this model complexity

makes it difficult to assess the correlations that lead to poor generalization of performance to

measured data. Improving simulation is one approach to try to narrow the sim2real gap. For

instance, if the FE-I4’s noise, threshold, and saturation limits were more accurately modeled,

then the charge distributions would better agree which might improve generalization. But charge

distributions aren’t the only discrepancies. The 3D spatial distribution also matters, so differences

between measured and simulated gains and diffusion through the GEMs can have effects that are

difficult to tune.

We could also work to “strengthen” the features that the network learns from. The most effective

way to do this would be to build a detector that’s more optimized for low energy directionality. In
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Figure 7.21: Comparison of charge (TOT) distributions of measured and simulated events satisfying
2.0 cm < ` < 2.2 cm. Both histograms are normalized to an integral of unity.

the absence of a more ideal detector, with our current setup there are ways that we may be able

to improve the generalization potential of our 3DCNNs. Shortening the drift length by moving

the source cube closer to the TPC readout is something we could immediately try that would

reduce the diffusion due to drift of recoil events. This would improve angular resolution but come

at a cost of energy resolution unless we decreased the gain slightly. Alternatively we could lower

the gas pressure of our He:CO2 mixture which would lead to longer tracks at a fixed energy, and

thus better angular resolution. Adjusting either of these in simulation and measurement could

lead to the 3DCNN learning stronger correlations for classification that may generalize better to

measurement.

At the time of writing, we are investigating detailed differences between experimental data and

simulation, and working to make the 3DCNN head-tail classifier generalize better to experimental

data, but that work is beyond the scope of this dissertation.
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CHAPTER 8
DEEP LEARNING FOR IMPROVED KEV-SCALE

SIMULATED RECOIL IDENTIFICATION

In Chapters 5-7 we developed and trained 3DCNNs for both event classification and directional

head-tail in the BEAST TPCs. What follows here is a self-contained simulation study comparing

electron rejection performance for He and F recoils in a 60-Torr mixture of He:CF4:CHF3, which

is a gas mixture that is better suited for low energy directional sensitivity. This chapter has been

submitted as a journal article to JCAP [29] and is currently being revised. The sections introducing

3DCNNs that will appear in the journal article have been removed, as they have already been pre-

viously introduced. We’re currently investigating bias in our event processing that may affect the

electron rejection performance of the 3DCNN. The other electron rejection techniques investigated

here are unaffected by this potential bias.

Abstract

Recoil-imaging gaseous time projection chambers (TPCs) with directional sensitivity are attractive

for DM searches. Detectors capable of reconstructing 3D nuclear recoil directions would be uniquely

sensitive to the predicted dipole angular distribution of DM recoils. Observation of this directional

distribution would unambiguously establish the galactic origin of a claimed DM signal. Recoil

directionality also would provide powerful discrimination against background recoils from solar

neutrino scattering. These advantages of directionality can only be exploited however, if electron

recoil backgrounds from gamma rays can be sufficiently suppressed. We introduce a deep learning-

based recoil event classifier that uses a 3D convolutional neural network (3DCNN) to identify event

species based on their recoil images. We compare electron background rejection performance of

discriminants determined by the 3DCNN both to the traditional discriminant of track length, as

well as discriminants obtained from state-of-the-art shallow learning methods. We train the 3DCNN

classifier using recoil charge distributions with ionization energies ranging from 0.5-10.5 keVee, for

25 cm of drift in an 80:10:10 mixture of He:CF4:CHF3. The charges are initially segmented into

(100× 100× 100)µm3 bins when determining track length and the shallow learning discriminants,

but are rebinned with a reduced segmentation of about (850 × 850 × 850)µm3 for the 3DCNN.

Despite the courser binning, compared to using track length, we find that classifying events with

the 3DCNN reduces electron backgrounds by a factor of up to 1,000 and effectively reduces the

energy threshold of our simulated TPC by 30% for fluorine recoils and 50% for helium recoils. We

also find that the 3DCNN reduces electron backgrounds by up to a factor of 20 compared to the

shallow machine learning approaches, corresponding to a 2 keVee reduction in the energy threshold.
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8.1 Introduction

Directly detecting the constituents of dark matter (DM) remains one of the key goals of contempo-

rary physics. Directional detection would provide unique, robust, and unambiguous confirmation

of the galactic origin of a signal in the form of a dipole distribution in galactic coordinates [16; 94].

As more regions of DM parameter space are being ruled out, and cross-section limits approach

the solar neutrino fog, directional detection is also increasingly of interest for maximizing DM

sensitivity within the fog, and for studying the solar neutrinos themselves. Detectors capable of

reconstructing the full 3D vector direction, energy, and time of individual recoil events are prefer-

able in this context. Such “recoil-imaging” detectors are widely applicable and hence garnering

increasing interest [12; 93].

Gaseous time projection chambers (TPCs) are the most mature recoil imaging technology with

event time measurement. Unlike liquid noble gas detector, which benefit from strong self-shielding,

one key issue in gas detectors is the rejection of electron recoil backgrounds from gamma rays.

TPCs with high-definition charge readout (HD TPCs) are, however, capable of reconstructing

the topology of both nuclear recoils and electron recoils in great detail, which we expect should

maximize particle ID capabilities and again help to reject such backgrounds. A key question then,

is whether the electron rejection in gas TPCs is sufficient to achieve a background free DM search

for a given experiment and exposure.

Studies of the proposed 1000 m3 gas TPC experiment CYGNUS [20], running for six years,

suggest the electron background will be flat in energy, and electron backgrounds must be rejected

offline by factors exceeding 6× 104 per keVee. Due to the diffusion in gas-based detectors, electron

identification performance falls exponentially with recoil energy. As a result, the effective analysis

energy threshold above which a large gas TPC will remain background free is determined by the

particular energy at which the electron rejection meets the performance requirement. A relatively

small improvement in electron rejection, and consequent reduction of the analysis energy threshold

can have large benefits on DM reach, because the expected DM recoil spectrum is generally steeply

falling with energy.

Because recoil-imaging HD TPCs offer extremely rich three-dimensional charge density measure-

ments, one obvious question is how to best exploit this information to maximize recoil identification.

This is a problem ideally suited for machine learning techniques.

There have been many efforts to improve electron background rejection for keV-scale recoil

events, which often use multivariate combinations of discriminant observables for event classifica-

tion. The MIMAC group, for instance, used boosted decision trees (BDTs) [95] to improve electron

rejection factors by a factor of 20 over more traditional methods [96]. More recently, we introduced

a set of nine observables that are based on the shape of the recoil charge cloud measured in a 3D

recoil-imaging TPC [97]. A joint combination of these nine event-shape variables using a hard-cuts-

based approach led to up to a two order of magnitude improvement in electron rejection over using
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the length along a track’s principal axis, which is a common observable for event classification.

Given the electron background rejection improvement observed both by multivariate combina-

tions of discriminant variables and the usage of event-shape variables, we attempt to combine the

best aspects of both of these approaches by introducing a deep learning-based classifier for event

identification. In particular, we introduce a 3D convolutional neural network (3DCNN, Chapter 8.3)

that is directly fed the 3D ionization density distribution of events, binned into a 32×32×32 voxel

grid, and outputs class probabilities of the recoil species of the event. We expect this end-to-end ap-

proach to enable us to capture more information than using predefined observables [98; 99; 100; 101],

thus leading to better background rejection performance. In Chapter 8.4, we separately combine the

nine event-shape observables with two shallow learning techniques, (1) a BDT and (2) a fully con-

nected neural network (FCNN), both of which also output recoil-species class probabilities that can

be used as multivariate classification discriminants. Comparing the electron background rejection

performance between these shallow learning-produced discriminants and the hard-cuts-based com-

bined observable from Ref. [97] allows us to assess the relative effectiveness of different techniques

of combining the nine event-shape observables. Comparing the electron rejection performance of

the 3DCNN with the best-performing combination of these observables provides insight on if any

crucial event-shape information is missing from the set of nine observables.

8.2 Overview of simulation

Before introducing our new classifiers, we first describe the simulated detector and recoil charac-

teristics used in our study. We build off of previous work from our group and generate a large

simulation sample using identical parameters to those in Ref. [97]. Doing this allows us to directly

compare the electron rejection performance of our new classifiers with already established electron

rejection improvements.

We use SRIM [102] and retrim [103] to simulate recoiling He and F nuclei and DEGRAD [104]

to simulate electron recoils in an 80:10:10 mixture of He:CF4:CHF3 at a total pressure of 60 Torr

and temperature of 25◦C. The SRIM computation requires a compound correction for every nucleus

in the gas mixture (He, H, C, and F). The calculation of these compound corrections and their

associated values are detailed in Ref. [97]. The retrim step requires the average energy per ion

pair, W , and Fano factor, F , which were calculated using Garfield++/Heed [75] as W = 35 eV and

F = 0.19, respectively. DEGRAD can simulate recoils isotropically; however, for SRIM and retrim

we isotropize the recoil simulations after generating the initial ionization distributions. We assume

a drift field of 40.6 V/cm parallel to the drift direction and use Magboltz [69] to determine the

corresponding transverse and longitudinal diffusion coefficients as (σT , σL) = (398, 425)µm/
√

cm.

The diffusion is applied to our simulations assuming a uniform drift length of 25 cm.

After applying diffusion, we assume each individual electron is detected. We do not simulated

any charge amplification or digitization, but instead simulate a highly efficient, pixelated readout
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by binning each primary track into (100 µm× 100 µm× 100 µm) voxels. We note that our choice of

a 40.6 V/cm drift field corresponds to 100 µm per clock cycle on a 40 MHz clock which is equivalent

to the readout refresh rate used in existing TPCs with pixel readout [23].

8.3 Convolutional neural network classifier

Recoil-imaging TPCs with high readout segmentation reconstruct detailed 3D images of ionization

charge distributions of recoil tracks. These tracks have many identifiable characteristics that can

be used for particle identification. For sufficiently high energy recoil tracks, the length of the

track along its principal axis is often enough to reliably distinguish between electron recoils and

nuclear recoils, as electron recoils tend to create longer tracks following a more meandering path

than nuclear recoils of equivalent energy. At lower energies, however, diffusion during drift has

a proportionately larger effect on the overall event topology, leading to more spherical ionization

distributions. Figure 8.1 shows ∼6 keVee examples of each of the three recoil species investigated

here. Comparing the background electron recoil (left) with the signal fluorine and helium recoils

(middle and right, respectively), we see that both of the nuclear recoil species have a dense cluster

of charge near the center of the event, whereas the electron recoil appears to be a more diffuse

charge cloud with larger gaps. It’s difficult to unambiguously identify the principal axis direction

of low energy tracks, leading to poor angular resolution. Furthermore, a few stray charges can

significantly bias the length along the principal axis, which may lead to event misclassification

with this traditional approach. Since there are so many features present in these tracks, using a

deep learning classifier where the classifier learns the best patterns for event selection on its own,

independent of an identified principal axis, is attractive. To this end, we construct and train a

3DCNN classifier that is directly fed 3D voxel grids of the ionization distribution of individual

recoil events with the recoil species assigned as the class-label of the event.

8.3.1 Data processing for the 3DCNN

We simulate 12,380,422 electron recoil events ranging in ionization energies between 0.5 keVee and

10.5 keVee, 367,984 F recoil events, and 338,909 He recoils. The nuclear recoils are simulated with

a uniform energy spectrum between 5 keVr and 50 keVr. While our simulated detector is sensitive

to individual electrons, nuclear recoils still lose energy due to quenching, so in the absence of

reconstructing the true recoil energy, we compute the ionization energy of all nuclear recoil species

in terms of electron equivalent energy to allow for a direct comparison of electron rejection at

a given ionization energy in our detector. Expressed in terms of electron equivalent energy, the

ionization energy of a nuclear recoil Eionization, is computed as
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Figure 8.1: 3D charge distributions of 6 keVee electron, fluorine, and helium recoils after diffusion.
The top row shows the original (100 µm× 100 µm× 100 µm) binning of these events, which is fine
enough that there is only a single charge in each filled bin. The bottom row shows the events
re-binned into the (32× 32× 32) voxel grid that are input into the 3DCNN.
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Recoil
species

Original energy
range [keVr]

Energy
range [keVee]

# Events
training set

# Events
validation set

# Events
test set

e –– 0.5-10.5 2,947,702 491,429 8,941,291
F 5-50 0.5-10.5 53,760 8,812 161,727
He 5-50 0.5-10.5 22,443 3,743 67,588

Table 8.1: Event samples used with the 3DCNN classifier. Events in each sample are binned in
1 keVee wide bins centered at integer ionization energy steps between 1 keVee and 10 keVee. We
train and evaluate the 3DCNN classifier separately for each energy bin.

Eionization = NeWe, (8.1)

where Ne is the number of electrons produced in the recoil event, and We is the average energy

per electron-ion pair. Following the approach in Ref. [97] we set We to 32.4 eV. After computing

Eionization, we restrict our nuclear recoil sample to 0.5 keVee ≤ Eionization ≤ 10.5 keVee, leaving us

with 224,299 F recoils and 93,774 He recoils.

The charges in our simulated events are already binned with (100×100×100)µm3 segmentation,

however because diffusion is larger than our bin size, we use a low density gas, and we do not

simulate any charge amplification, we find that the charge clouds are relatively sparse at this

resolution. While it is feasible to train a 3DCNN on current-generation hardware using the native

(100×100×100)µm3 resolution of our simulation, we opt to reduce the spatial segmentation of our

events to a 32×32×32 grid of bins evenly spaced within a cube of width 2.72 cm, leading to bin sizes

of about (850×850×850)µm3. We do this for two reasons: First, all fluorine recoil events are entirely

contained within this cube, so no recoil information is lost due to cropping, and second, the reduced

spatial segmentation leads to more than a factor of 600 reduction in grid volume compared to the

original (100 × 100 × 100)µm3 segmentation, leading to a substantial reduction in computational

cost. Comparing the top and bottom rows of Figure 8.1 it appears that the structure of recoil

tracks isn’t significantly altered with this reduced resolution, suggesting that event classification

performance for the simulated detector configuration will not be significantly hampered by our

reduction of spatial segmentation. We note that uncertainties in bin placement from re-binning

may slightly alter performance compared to binning the unbinned initial coordinates of 3D charge

into the 32× 32× 32 grid.

We use the PyTorch [85] software library for all neural network computations and store each

event as a tuple containing two entries: (1) a (32 × 32 × 32) voxel grid filled with binned charge

that is stored as a PyTorch tensor data structure, and (2) an integer representing the class-label of

the event. We label electron recoils as 0, F recoils as 1, and He recoils as 2. Charge in each bin of

the voxel grid is stored as unsigned 8 bit integers leading to an effective dynamic range of 0 to 255
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electrons per voxel. No bins are saturated in any event with this dynamic range.

8.3.2 Network architecture

Figure 8.2: Architecture of our 3DCNN classifier. Within the feature extraction portion, each cube
represents a unique feature map (represented by the different shade of each map), with the size
of the cubes shown approximately to scale in reference to the dimensions of the input image. We
show the bin content of one such-feature map in each layer to represent the steps of a convolutional
chain. Solid black lines connect larger pale red cubes, which illustrate the convolutional or pooling
filters acting on a portion of the input feature map, to the smaller magenta cubes which are the
outputs of the convolutional filter. The final 16 feature maps are then flattened and passed into a
fully connected neural network for classification. The FCNN diagram was produced using [86].

Figure 8.2 and Table 8.2 together outline the network architecture of our 3DCNN. As is shown

in Figure 8.2, our network consists of a series of convolutional and pooling layers for feature extrac-

tion, followed by a dense fully connected neural network (FCNN) for event classification. Within

the feature extraction portion of the neural network, we employ five convolutional blocks (Con-

vBlocks 1-5) and a pooling layer (AvgPool) to downsample the feature maps while still maintaining

important features. Each of the five convolutional blocks contain the following components: (i) A

3D convolution with a convolutional filter size listed in Table 8.2, (ii) a 3D batch normalization [87],

(iii) a scaled exponential linear unit (SELU) activation layer [88], and (iv) a randomized dropout

[89] of 0.03 to reduce overfitting.

Walking through the network architecture, we start with a (32 × 32 × 32) input image. The

vast majority of voxels in all input images are filled with 0, so we implement a stride of 2 in
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Layer
#

Filters
Filter size S

# Learnable
parameters

Dropout Output shape

ConvBlock 1 4 (2× 2× 2) (2,2,2) 44 0.03 (4× 16× 16× 16)
ConvBlock 2 8 (3× 3× 3) (1,1,1) 888 0.03 (8× 14× 14× 14)
ConvBlock 3 16 (3× 3× 3) (1,1,1) 3,504 0.03 (16× 12× 12× 12)
ConvBlock 4 32 (3× 3× 3) (1,1,1) 13,920 0.03 (32× 10× 10× 10)

AvgPool 32 (2× 2× 2) (2,2,2) –– –– (32× 5× 5× 5)
ConvBlock 5 16 (3× 3× 3) (1,1,1) 13,872 0.03 (16× 3× 3× 3)

FC1 –– –– –– 27,712 0.05 (64× 1)
FC2 –– –– –– 1,040 0.05 (16× 1)
FC3 –– –– –– 51 –– (3× 1)

Table 8.2: More specific details of each layer shown in Figure 8.2. We assume a single (1 × 32 ×
32 × 32) image is fed into the network. The output shape column gives the shape of the output
after each layer. The output of ConvBlocks 1-5 and AvgPool is a tensor of shape (D×L×W×H),
where D is the layer depth (number of feature maps), and L, W, and H are the length, width and
height of each feature map, respectively. S is the convolutional stride of the layer. The output
shapes of the FC layers are 1 dimensional vectors for each node in a given layer. In addition to the
weights and biases associated with each node in the FCNN, the entries within each convolutional
filter are also learnable parameters, so we list the total number of learnable parameters associated
with each layer in the network.

ConvBlock 1 to immediately downsample this block’s four output feature maps to (16 × 16 × 16)

to reduce the computational overhead of training and evaluating our network. Following the chain

in Figure 8.2, we next perform three successive convolutional blocks (ConvBlocks 2-4) where we

gradually increase the number of convolutional filters employed in each layer to produce more

feature maps for classification. ConvBlocks 2-4 each use (3 × 3 × 3) convolutional filters with a

stride of 1 and no padding, so each of these convolutions decreases the feature map dimension by

two, leaving us with 32 feature maps of size (10 × 10 × 10) at the end of ConvBlock4. After this,

we perform average pooling. We use a (2 × 2 × 2) pooling filter with a stride length of 2, leaving

us with 32 (5 × 5 × 5) feature maps that we feed into our final convolutional block (ConvBlock5)

which leaves us with 16 (3 × 3 × 3) feature maps. Since the values composing each convolutional

filter are learnable parameters, we expect that when the network is trained, there will be useful

features encoded in some of these feature maps. We finally flatten these feature maps into a

((16 × 3 × 3 × 3) × 1) = (432 × 1) vector, that contains each extracted feature at the end of the

convolutional chain. This flattened (432× 1) feature vector is then fed into a fully connected dense

neural network with two hidden layers and output class assignments corresponding to e, F, and

He recoils. Each of the three fully connected layers (FC1, FC2, and FC3) use a SELU activation

function and FC1 and FC2 include a random dropout of 0.05. The raw model output of each event

is a (3×1) vector, z, with entries corresponding to each of the three class outputs (e recoil, F recoil,

and He recoil). The softmax function
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σ(z)i =
ezi∑3
j=1 e

zj
. (8.2)

is applied to z to map the class outputs zi ∈ z to class probabilities. We henceforth label σ(z)1,

σ(z)2, and σ(z)3, as pe, pF, and pHe, which represent the model-predicted class probabilities of e,

F, and He recoils, respectively.

8.3.3 Training the network

We first shuffle the order of all events and then split the data into distinct training, validation,

and test sets with 3,023,905 events in our training sample, 503,984 events in our validation sample,

and 9,172,513 events in our test sample. We set the test sample aside and implement the following

procedure to train our model:

1. Form a PyTorch tensor of shape (256× 32× 32× 32), which is a minibatch consisting of 256

randomly selected voxel images from the training sample.

2. Feed the minibatch and the corresponding truth label of each image of the minibatch into

the 3DCNN.

3. Use PyTorch’s built in CrossEntropy loss function to compute the loss of the batch. We wish

to minimize this loss. We use an Adam [90] optimizer with a learning rate of 0.0002.

4. Update model weights using backpropagation [91].

5. Repeat steps 1-4 until we’ve run through all events in the training set. This is called a training

epoch.

6. At the end of each training epoch, repeat steps 1-3 for the validation sample. We do not

implement step 4 as we don’t wish to train the 3DCNN on the validation set. Compute the

sum of the losses of each minibatch of the validation sample.

7. If the summed losses over the validation set minibatches are less than in the previous epoch,

we treat this as the model learning and save all model weights.

8. Implement early stopping [92] where steps 1-7 are repeated until the total validation loss

doesn’t decrease at all over 10 successive epochs.

9. The model state corresponding to the epoch with the lowest validation loss is our trained

model.

We were able to train the 3DCNN with an Nvidia GeForce RTX 2070 consumer-grade laptop GPU

in less than 6 hours.
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Figure 8.3: Comparison of traditional (track length) and 3DCNN-based (pe, pF and pHe) dis-
criminants for events in the test sample satisfying 6.5 keVee < Eionization < 7.5 keVee. The shaded
regions in the panels indicate events that are rejected after selections corresponding to 50% F recoil
efficiency (dashed black vertical line) and/or 50% He recoil efficiency (solid black vertical line).
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8.3.4 Interpreting model output

We use the 3DCNN output variables pe, pF, and pHe as event classification discriminants. Figure 8.3

shows a comparison of the distributions of track length, pe, pF, and pHe for all true F recoils (blue),

all true He recoils (green), and all true electrons (orange) in the test sample of data. Since pe, pF,

and pHe represent class probabilities, for each event, pe + pF + pHe = 1, meaning if our 3DCNN

is a good classifier, we should then expect that each class probability peaks strongly toward 1 for

its corresponding class, and strongly toward 0 for the other two classes. This expected behavior is

observed in Figure 8.3, suggesting that pe, pF, and pHe are strong event classification discriminants.

In addition to rejecting electron backgrounds, these discriminants can also be used to distin-

guish nuclear recoil signal candidates. To quantify classification performance, we define the signal

efficiency as

εs =
N ′s
Ns

, (8.3)

where Ns is the total number of signal events in the sample and N ′s is the number of remaining

signal events after making a selection. Now, suppose we want to quantify the signal purity of F

recoils at an F recoil efficiency of εF = 0.5. We can do this by determining p′F, the median pF of

true F recoils. Then, we can determine the number of F, He, and e recoils where pF > p′F, and

compute the F recoil purity as N ′F/(N
′
e +N ′F +N ′He). The bottom left panel of Figure 8.3 shows an

example of these selections for the set of recoil events between 6.5 keVee and 7.5 keVee, where the

black vertical dashed line corresponds to p′F. We can perform an analogous procedure with pHe to

compute the He recoil at a fixed He recoil efficiency.

In certain instances it may be advantageous to treat any nuclear recoil species as signal and

electrons as background. In these cases we could treat pe as a binary classification variable between

electrons versus not electrons (i.e. signal nuclear recoils for this ternary classification model). For

example, if we wanted to calculate the nuclear recoil purity at a nuclear recoil efficiency of εR = 0.5,

we could determine, p′e, the median value of pe for all He or F recoils. We would then compute

(N ′F + N ′He)/(N
′
e + N ′F + N ′He) where N ′F, N ′He, and N ′e represent the number of events of each of

these three classes after applying a selection of pe < p′e.

Since signal purity depends on the relative composition of recoil constituents, we opt to mostly

use the notion of a rejection factor, R, to quantify background rejection performance. We define the

sample size-independent electron rejection factor Re as the ratio of the total number of electrons

in a sample Ne to the number of electrons remaining after a selection, N ′e

Re =
Ne

N ′e
. (8.4)
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For the 7 keVee sample shown in Figure 8.3, when using length as the event classification variable

we find rejection factors of 135 ± 2 and 870 ± 30 for εHe = 0.5 and εF = 0.5, respectively. Using

3DCNN output probability as our event classification variable, we find that only five electrons

remain both for He recoils at εHe = 0.5 and F recoils at εF = 0.5, leading to an electron rejection

factor of 141, 400± 63, 000 for both of these cases, a more than 3 order of magnitude improvement

over the traditional track length discriminant for He recoils.

8.4 Shallow learning classifiers

Here we introduce the nine event-shape discriminants used in Ref. [97] and train both a BDT

(Chapter 8.4.2) and an FCNN (Chapter 8.4.3) to combine these observables into multivariate

classification discriminants.

8.4.1 Defining electron rejection discriminants

Each of the following variables are computed using our simulated TPC’s native (100×100×100)µm3

resolution, as opposed to the reduced (850 × 850 × 850)µm3 segmentation used for the 3DCNN

classifier.

1. Length along the principal axis (LAPA): We use a singular value decomposition (SVD) to

identify the principal axis of the 3D track, and then take the difference between the maximum

and minimum of the track’s ionization distribution coordinates projected onto this principal

axis.

2. Standard deviation of charge distribution (SDCD): The standard deviation of the 3D position

vectors of all charges in the event.

3. Maximum charge density of the event (ρMax): This discriminant is optimized by varying the

bin width of the charge in cubic voxels and recording the maximum amount of charge in a

voxel. ρMax was separately optimized to maximize electron rejection for weakly-directional

7 keVee F recoils and for directional 12 keVee He recoils as described in Ref. [97].

4. Charge uniformity (QUnif): The standard deviation of the distribution of mean distances

between each charge and all other charges in a recoil event.

5. Cylindrical thickness (CylThick): Sum of the squared transverse distances from each charge

to the principal axis of the track.

6. Number of clusters (NClust): Number of clusters determined by the DBSCAN [105] clustering

algorithm. Two of the input parameters to this algorithm were adjusted to find the pair that

optimizes electron rejection both for weakly-directional 7 keVee F recoils and for directional

12 keVee He recoils as described in Ref. [97].
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ρMax,F SDCD CThresF ρMax,He CThresHe CylThick QUnif LAPA NClust

0.437 0.231 0.169 0.111 0.032 0.009 0.007 0.003 0.002

Table 8.3: Normalized feature importance of the nine discriminants in the trained BDT.

7. Clustering threshold (CThres): The threshold that the fraction of total event charge in the

largest cluster of an event must be above. Clustering is performed DBSCAN and the threshold

value is optimized separately to maximize electron rejection for weakly-directional 7 keVee F

recoils and for directional 12 keVee He recoils.

Given the separate directional and weakly-directional optimizations for the ρMax and ClustThres

observables, we have a total of nine discriminants to work with.

8.4.2 Boosted decision tree

We use the XGBClassifier model in the XGBoost [106] software library as our BDT classifier for

recoil classification. For this BDT analysis, we first randomize the order of our data and then

partition the data into a 23.8% / 4.0% / 72.2% training/validation/testing sample split. The

validation data sample is not used for the BDT analysis; however we still opt to create a validation

set so that we have an identical testing set to what’s later used in the FCNN analysis. For each

event, we compute the nine discriminants and store the results as a (9× 1) vector to feed into the

BDT classifier. We assign class-labels of 0 for e recoils, 1 for F recoils, and 2 for He recoils.

Given the relatively quick training and evaluation time of XGBoost compared to our 3DCNN

classifier, we perform a course, two-step partial grid search to optimize some of the hyperparameters

in the XGBClassifier model. We make the a priori decision to choose the set of hyperparameters

(Ntrees, Dtree, `) that maximizes the electron rejection factor Re for 7 keVee F recoils at εF = 0.5,

where Ntrees, Dtree, and ` represent the number of trees, the maximum depth of a tree, and the

learning rate of the model, respectively. The first step of our grid search is to fix ` at 0.2, and

then train and evaluate our BDT using all 16 combinations of Ntrees ∈ {50, 100, 200, 500} and

Dtree ∈ {2, 3, 5, 7}. We find that Ntrees = 200 with Dtree = 3 to be the best combination at ` = 0.2,

leading to Re = 101, 000 ± 38, 000. Since this combination of Ntrees and Dtree does not sit at the

boundary of our grid, we keep this combination and move on to our next step of optimizing `. In

our second step of the grid search, we train our classifier using ` ∈ {0.1, 0.15, 0.2, 0.25, 0.3} and find

our initial choice of ` = 0.2 to be the best, so we freeze our optimal set of hyperparameters for our

BDT classifier at (Ntrees = 200, Dtree = 3, ` = 0.2).

We trained our BDT model using 53,959 F recoils, 22,265 He recoils and 2,992,534 e recoils in

our training sample1. Similar to the 3DCNN classifier, the BDT outputs ternary class probabilities,

1Data for the shallow learning classifiers uses the same simulation as the 3DCNN, but was processed independently,
leading to small differences in the training sample statistics compared to Table 8.1. We ensured the number of each
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Layer Input shape Output shape Dropout

Input (9× 1) (32× 1) 0.05
Hidden 1 (32× 1) (64× 1) 0.05
Hidden 2 (64× 1) (128× 1) 0.05
Hidden 3 (128× 1) (32× 1) 0.05
Output (32× 1) (3× 1) ––

Table 8.4: FCNN classifier architecture. As mentioned in the text, the input vectors are formed
with normalized z-scores of each of the nine electron rejection observables. We use a ReLU activa-
tion function and a randomized dropout of 0.05 at the input and each of the hidden layers. When
test sample events are passed through the trained network, a softmax function is applied to the
model output to give class probabilities.

pe,BDT, pF,BDT, and pHe,BDT, allowing for the same model output interpretation as the 3DCNN

(Chapter 8.3.4).

A benefit of using a BDT classifier is the ability to track the decisions made throughout all

branches in the trained classifier model. Table 8.3 shows the normalized feature importance of each

of the nine discriminants. Here we define the feature importance for a particular observable to be

the sum of the information gain [107] of all splits where the observable is used, normalized so that

the sum of the feature importance of all nine observables is 1. The two observables with the highest

feature importance, ρMax,F and SDCD, are the same two discriminants that perform best in terms

of electron rejection factor versus Eionization at 50% F recoil efficiency in Ref. [97].

8.4.3 Fully connected neural network

We next train and evaluate the performance of an FCNN using identical training, validation, and

test sets to those generated for the BDT classifier to derive a fair comparison between the two

classifiers. Our FCNN consists of an input layer with 9 nodes representing each of the electron

rejection observables we’ve defined, 3 hidden layers, and an output layer with 3 nodes that represent

our three output classes (Table 8.4). We use a ReLU activation with batch normalization after the

input and hidden layers, and apply a randomized dropout of 0.05 in all layers except the output

layer. We train this FCNN classifier by forming minibatches of 512 events, where each event consists

of a (9×1) PyTorch tensor of normalized z-scores of each of the nine observables and the associated

class-label. We then follow the same training procedure (steps 3-9 shown in Chapter 8.3.2) with

the same early stopping trigger that we used for the 3DCNN classifier training, except we use a

learning rate of 0.001.

We performed a moderate amount of hand-tuning of the hyperparameters for the FCNN, rather

than a full hyperparameter search, and find that in general the FCNN gives better electron rejec-

recoil species in the test sample here matches exactly with Table 8.1. Furthermore, when binning in integer steps
of electron equivalent energy, the number of each recoil species in the test sample here is identical to the number of
each recoil species in the 3DCNN test sample within each energy bin.
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tion performance than the BDT classifier, especially for He recoils. Similar to the 3DCNN, the

output of each event passed through the FCNN classifier is a (3 × 1) vector containing outputs

associated with each of the three recoil species, so we apply a softmax to this vector to obtain class

probabilities pe,FCNN, pF,FCNN, and pHe,FCNN that may be interpreted analogously to the output

class probabilities given by the 3DCNN and BDT.

8.5 Event identification performance results

We now have a set of class probabilities from the 3DCNN, BDT, and FCNN classifiers that can

be used to quantify and compare event selection performance. We also include the multivariate

observable from Ref. [97] in our comparisons where available.

For a future directional DM detector, it is useful to consider electron background rejection both

as a function of ionization energy at fixed nuclear recoil selection efficiency and as a function of

nuclear recoil efficiency at fixed energies. Comparing electron rejection performance versus energy

provides insight toward the energy threshold required for near background-free operation at a given

exposure, while comparing versus nuclear recoil efficiency allows us to compare detector exposure

required for a fixed signal yield. Figures 8.4 and 8.5 show the results for both of these approaches.

Figure 8.4 shows Re performance versus energy at a fixed 50% nuclear recoil efficiency for

F recoils (left) and He recoils (right). In cases where all electrons are rejected, we plot Re as

1× 106 with zero uncertainty. The black dashed line labeled “No ML” is the combined observable

from Ref. [97]. For the three machine learning discriminants and the traditional track length

discriminant, we apply the following procedure to determine Re in each energy bin:

1. Determine the values, p′R, p′R,BDT, p′R,FCNN, and track length, L′R, that correspond to a 50%

efficiency of recoil R. In the left panel of Figure 8.4, R = F, and in the right panel, R = He.

2. Ne is the total number of electrons within the energy bin and N ′e for the 3DCNN, BDT,

FCNN, and track length classifiers, is the number of electrons in the energy bin satisfying

selections of pR > p′R, pR,BDT > p′R,BDT, pR,FCNN > p′R,FCNN, and LR < L′R, respectively.

3. Re is computed for the 3DCNN, BDT, FCNN, and track length classifiers with Eq. (8.4)

using the N ′e associated with the chosen classifier.

In general, we find that the 3DCNN outperforms all other methods of electron background rejection,

especially for He recoils. The CYGNUS collaboration mentions in their feasibility study that

electron rejection will effectively determine their energy threshold [20], and argue that with a 6

year exposure and flat electron background energy spectrum of 1× 104 keV−1
ee year−1, they will

be essentially background-free at energies corresponding to an electron rejection factor in excess

of 6 × 104. With εF = 0.5, we find Re > 6 × 104 starting around 10 keVee using length as a

discriminant, compared to somewhere between 6 keVee and 7 keVee with the 3DCNN, meaning the
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Figure 8.4: Comparison of electron rejection performance of all discriminants versus electron-
equivalent energy at 50% fluorine recoil efficiency (left) and 50% helium recoil efficiency (right).
The top and bottom row plots share a common horizontal axis with energy-bin centers at integral
energy steps from 1 to 10 keVee. The black dashed lines show the combined observable introduced
in Ref. [97]. The bottom bar plots show the number of remaining electrons after a given recoil
selection in each integer energy bin. The transparent bars indicate the total number of electron
recoils in each energy bin.
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use of the 3DCNN for electron rejection lowers the “background-free” energy threshold by more

than 3 keVee over using length. At εHe = 0.5 Ref. [97] found that Re doesn’t exceed 6 × 104

until around 14 keVee using length as a discriminant, while with the 3DCNN classifier it exceeds

6 × 104 at 7 keVee. We note here that given the logarithmic scale shown in Figure 8.4, electron

rejection performance drops off exponentially with energy, so a factor of two reduction of the

“background-free” energy threshold for He recoils when using the 3DCNN classifier over using

length is a significant improvement. The otherwise state-of-the-art FCNN and BDT combinations

of observables have “background-free” thresholds of around 9 keVee for He recoils so the 3DCNN

reduces this threshold by around 2 keVee. Even a seemingly small reduction in energy threshold

has a significant impact on DM reach, given the that expected DM recoil energy spectrum falls

steeply with energy.
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Figure 8.5: Comparison of electron rejection performance of all discriminants versus nuclear recoil
efficiency for 7 keVee fluorine recoils (left) and 7 keVee helium recoils (right). The top and bottom
row plots share a common horizontal axis. The black dashed line in the upper left hand plot shows
the combined observable from Ref. [97]. The bottom bar plots show the number of remaining
electrons after a given recoil selection in each efficiency bin.
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Figure 8.5 shows Re and N ′e after selections at various F recoil efficiencies (left) and He recoil

efficiencies (right) for these same discriminants. We choose to evaluate Re and N ′e at a fixed

electron-equivalent energy range of 6.5 keVee < E < 7.5 keVee because this is the lowest energy

range exceeding the CYGNUS background-free criteria of Re > 6 × 104 at both εF = 0.5 and

εHe = 0.5. We use the same procedure to compute Re and N ′e as in Figure 8.4, except now the

values of p′R, p′R,BDT, p′R,FCNN, and L′ are separately computed for each εR. Since the ρMax,F,

CThresF, and NClust variables were optimized specifically for 7 keVee F recoils, we expect this

7 keVee bin will produce the best relative Re of the shallow learning classifiers compared to the

3DCNN. We note here that the combined observable from Ref. [97] was computed at 12 keVee for

He recoils versus εHe. Given that the 3DCNN rejects all but two electrons down to 8 keVee at

εHe = 0.5 (Figure 8.4), we expect the 3DCNN to reject essentially all 12 keVee electron recoils, so

we do not investigate the 12 keVee scenarios discussed in [97].
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Figure 8.6: Comparison of He and F recoil rejection at fixed F and He signal efficiencies. RHe and
RF are rejection factors for He and F recoils, respectively and are both defined analogously to Re.
The bins in the upper right plot with no data points plotted have all F recoils rejected.
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Comparing each multivariate classifier constructed from combining the nine event-shape vari-

ables, we find that introducing machine learning for multivariate analysis leads to an improvement

in electron rejection above εF ≈ 0.2. We find further improvement with the use of the 3DCNN,

where it improves Re by more than 2 orders of magnitude over selections on length at higher F

recoil efficiencies. For He recoils, we find that the 3DCNN classifier significantly outperforms all

other models, often leading to an order of magnitude increase in Re compared to the BDT and

FCNN combinations of the nine electron rejection observables. Furthermore, we find that selecting

on 3DCNN output probability at 85% He recoil efficiency leads to a higher Re than selecting on

length at 10% He recoil efficiency, meaning that usage of the 3DCNN classifier could allow an

experiment to run with a factor of 8.5 smaller exposure and obtain the same He recoil signal, at

an improved background level over using track length to classify events.

An additional benefit of training the machine learning models as ternary classifiers is the ability

to use the three output class probabilities to not only reject electron backgrounds, but also classify

nuclear recoil species. Figure 8.6 summarizes the nuclear recoil classification ability of the three

machine learning classifiers. Above 6 keVee all three classifiers maintain 50% F recoil efficiency while

rejecting greater than 99% of He recoils. Above 5 keVee, each classifier starts to do a better job

selecting pure samples of He recoils than F recoils, especially the 3DCNN classifier. Selecting pure

samples of He recoils is desirable, as low energy He recoils tend to have better angular resolution

than F recoils of the same energy, so the ability to select a background-free, almost entirely pure

sample of He recoils down to 7 keVee at εHe = 0.5 is significant. To quantify this, there are 3,721

He recoils, 1 F recoil, and 5 e recoils in our sample that satisfy pHe > p′He, where p′He is the 3DCNN

He class probability corresponding to εHe = 0.5 in the 7 keVee energy bin. This means we have a

He recoil purity in excess of 99.8% for 7 keVee He recoils at εHe = 0.5. Though the fraction of each

event type present in our simulation doesn’t model a physically expected event composition, these

numbers suggest that use of the 3DCNN will lead to a high He recoil purity for 7 keVee He recoils

at εHe = 0.5 in a directional DM experiment.

8.6 Robustness of 3DCNN performance

The event identification performance demonstrated with the 3DCNN is promising, however no

simulation is perfect, so it is important to test the robustness of classification performance to

perturbations in our simulation. We test this by adding N noise hits to our events and then

compare the electron rejection performance of the 3DCNN evaluated on our noisy events (N = N ′)
with the electron rejection performance evaluated on the raw events (N = 0). In particular, we

implement the following procedure using N ′ = 1, 5, 10, and 50 noise hits:

1. For each raw event binned for the 3DCNN classifier, generate an empty 2.72×2.72×2.72cm3

voxel grid with the same 850 µm segmentation used previously for the 3DCNN analysis and
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Figure 8.7: Comparison of raw event, a random noise distribution, and the “noisy event” when
N ′ = 50. Left: Raw 3D event display using the (850 × 850 × 850)µm3 segmentation. Middle:
Random 3D noise distribution computed on a 32×32×32 grid with the same segmentation. Right:
The combined “noisy event” containing all points from the raw charge distribution as well as the
noise distribution.

fill it with a random distribution of N ′ distinct noise hits. The random noise distribution is

in general different for each event.

2. Add the noise voxel grid to the raw event voxel grid to produce “noisy events”. Figure 8.7

shows an example of this when N ′ = 50, where the event in the rightmost panel is the noisy

event.

3. Feed the noisy event analogs of each raw event from the test set described in Table 8.1 into

the 3DCNN to classify the noisy events. We do not train the 3DCNN on any of the noisy

events.

As a baseline reference, we also follow an analogous procedure to test the robustness of electron

rejection performance using track length as our classification discriminant. Since the length of an

event’s principal axis is heavily dependent on geometry, we crop all charge of the centered 100 µm

segmented events used with our track length classifier to fit within the 2.72× 2.72× 2.72 cm3 voxel

grid to match the readout boundaries used for the 3DCNN classifier. We then add N = N ′ noise

points within this grid. Figure 8.8 summarizes the electron rejection versus energy performance

for both of these classifiers using identical samples of raw events with N = N ′ noise points added,

where N ′ = 0, 1, 5, 10, and 50.

We first note that with 50 noise points added to each event, the electron background rejection

performance of the 3DCNN significantly exceeds using track length on events without any noise

added. More generally, we find that electron rejection performance of the 3DCNN falls off gracefully

with the addition of noise, whereas performance using track length degrades catastrophically. While

the addition of up to 10 noise points doesn’t have a significant effect on the 3DCNN’s classification

performance, the addition of just a single noise point significantly reduces the performance of track
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Figure 8.8: Electron rejection versus electron-equivalent energy performance generalization on
noisy events using the 3DCNN (circles with solid lines) and track length (triangles with dashed
lines) discriminants at 50% fluorine recoil efficiency (left) and 50% helium recoil efficiency (right).
The top and bottom row plots share both common horizontal axes and common legends. Points
within each energy bin are shifted horizontally for visual clarity. The bottom row plots show the
ratio of electron rejection factors with N ′ noise points to the electron rejection factors computed
using raw events without noise. Note: When N = 0, Re using track length is slightly lower here
than in Figure 8.4 due to us cropping charge outside of the 2.72× 2.72× 2.72cm3 grid.
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length as a background discriminant. Indeed, when N = 1, below 5 keVee track length doesn’t have

any significant discriminatory power, and above 5 keVee electron rejection factors drop by around

2 orders of magnitude for F recoils and by nearly an order of magnitude for He recoils compared to

N = 0. Only when N = 50 do we start to see a significant drop in electron rejection performance

for the 3DCNN, however the proportional performance drop is still lower than the drop between

N = 0 and N = 1 for track length, demonstrating that the 3DCNN is a robust classifier against

the addition of random noise.

8.7 Conclusion

We have introduced a deep learning approach to event selection in 3D recoil-imaging TPCs and

compared its performance to other state-of-the-art machine learning-based multivariate classifiers.

Training a 3D convolutional neural network on the 3D charge distributions of recoil tracks, we found

a significant improvement in electron rejection performance between 0.5 keVee and 10.5 keVee com-

pared to shallow learning methods that form multivariate classification variables from predefined

event-shape observables. Notably, the improved performance of the 3DCNN holds when using input

data with a reduced spatial segmentation of (850×850×850)µm3 compared to (100×100×100)µm3

segmentation used to compute the observables fed into the shallow learning classifiers. We find that

the 3DCNN classifier outperforms other methods by a larger margin for He recoils than for F re-

coils indicating that the nine event-shape observables used in the BDT and FCNN classifiers are

better suited for electron rejection in F recoil samples than in He recoil samples. Since the 3DCNN

classifier decides which features for event classification are most useful on its own, using a classifier

like this is advantageous, as it seems to have found more useful sets of features to classify nuclear

recoils (especially He recoils) than our predefined observables. Defining the background-free energy

threshold of our simulated detector to be the lowest energy corresponding to Re ≥ 6× 104, we find

our threshold to be between 6 keVee and 7 keVee for both F and He recoils at 50% nuclear recoil

efficiency when using the 3DCNN output probability to select for events. Using this 3DCNN to

classify events effectively reduces the energy threshold of our simulated detector by over 30% for F

recoils and around 50% for He recoils compared to classification using track length; a significant im-

provement over traditional keV-scale recoil identification techniques considering the steeply falling

energy spectrum expected for DM recoils. Furthermore the 3DCNN is robust against the addition

of random noise and maintains excellent overall electron rejection performance even when classi-

fying events with 50 randomly assigned additional noise hits. The 3DCNN classifier is also able

to assign classification probabilities to multiple recoil species simultaneously, making it a flexible

approach for event classification that should be of general interest for directional DM searches.
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CHAPTER 9
IMPACT AND CONCLUDING REMARKS

We have demonstrated the versatility and robustness of directional recoil detection experimen-

tally and substantially extended its performance through improved analysis techniques and use

of machine learning. Operating the 40-cm3 BEAST TPCs at the SuperKEKB collider—an ex-

tremely high background setting—we demonstrated electron background-free operation down to

6 keVee. Using a singular value decomposition to assign principal axes to recoil tracks, we reduced

the energy threshold corresponding to angular resolutions within 20◦ for simulated He recoils, from

100 keVee to 60 keVee. We additionally introduced corrections to charge integration bias for highly

inclined nuclear recoil tracks that improved head-tail recognition efficiencies from 72% to 91% for a

sample of simulated He recoils ranging from 40 keVee to about 1 MeVee. Applying this technique to

assign vector direction on a similar sample of measured nuclear recoils, we found agreement between

measured and simulated angular distributions of nuclear recoil tracks, leading to the experimental

verification of a radiative Bhabha neutron-production-hotspot in the SuperKEKB tunnel.

On the operational front, we reduced the footprint of each TPC by developing and installing

internal GEM divider circuits and improved gas-flow control and stability by adopting serial flow

between TPCs in two parallel branches. Operating at modest avalanche-gains of O(1,000), the

BEAST TPC system at SuperKEKB has far outlasted its originally planned expiration date of

2018, with six TPCs continuing to collect neutron-background data through the first half of 2022

without the need to replace any internal detector components. Put together, we’ve demonstrated

that the BEAST TPCs, as a technology, are a portable and flexible diagnostic tool that can be easily

deployed for directional recoil detection applications. We plan to continue operating the BEAST

system at SuperKEKB after the Summer 2022-2024 long shutdown period, which is a testament to

the robustness of the TPCs and the effectiveness of the low-gain operation strategy we’ve employed

for fast neutron measurements with these TPCs.

We also presented the first attempt to bridge the performance gap between directional neutron

measurements and the expected requirements for directional DM detection using 3DCNNs. We

showed that 3DCNNs lead to a significant performance improvement over other approaches in

directional head-tail identification in the “neutron detection” regime that includes higher energy

nuclear recoils at double-GEM gains of O(1,000). Our 252Cf neutron-source studies demonstrated

that the head-tail identification performance of the trained 3DCNN generalizes well to measurement,

where we observed strong peaking in the head-tail assignment probability distributions that match

the expected direction of recoils from neutrons originating at the source. This peaking translates

to the first statistically significant demonstration of event-level head-tail sensitivity below 50 keVee

for measured nuclear recoils in an atmospheric pressure gas mixture.

Increasing the gain to around 13,000 where we are sensitive to pixel hits from single primary
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electrons, we find that the 3DCNN is able to correctly assign head-tail to over 80% of 9 keVee

simulated He recoils. The head-tail effect has yet to be observed for sub-10-keV recoils, so this

level of performance is unprecedented, especially in a detector that isn’t optimized for low energy

directionality. Unfortunately, this performance does not yet generalize to measurement, so more

work is needed to improve the robustness of the 3DCNN to low energy recoils.

Finally, we compared the electron background rejection performance of a 3DCNN trained on

0.5 keVee-10.5 keVee recoil charge distributions with (850 µm)3 segmentation to using track length

and to shallow learning classifiers that combine multiple predefined discriminants that are computed

on the same recoil events but using (100 µm)3 segmentation. The recoil events were generated in an

80:10:10 mixture of He:CF4:CFH3 at 60 torr, and despite the courser segmentation of the events the

3DCNN was trained and evaluated on, we found the electron rejection perofrmance of the 3DCNN

to significantly outperform the other methods. In particular, if we define a background-free energy

threshold as the lowest energy corresponding to Re ≥ 6×104, then at 50% F and He recoil efficiency,

respectively, this threshold is between 6 keVee and 7 keVee using the 3DCNN, which is about a 30%

(50%) reduction in threshold compared to using track length for F (He) recoils. Furthermore

the 3DCNN is robust against the addition of random noise and maintains excellent overall electron

rejection performance even when classifying events with 50 randomly assigned additional noise hits.

Given the steeply falling energy spectrum expected for WIMP recoils and that electron rejection

becomes exponentially more difficult with decreasing energy, the electron background rejection

performance improvements demonstrated with the 3DCNN are significant.

The work presented in this dissertation will appear in four peer-reviewed publications. Two

have already been accepted [24; 25], one is currently under peer review [29], and the final one is in

preparation.
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APPENDIX A
ASSIGNING TIMESTAMPS TO EVENTS

In earlier data processing and analysis campaigns between 2018 and early 2021, we were uninten-

tionally discarding good events recorded in the TPCs. Here we describe how the asynchronous

triggering in the TPC system works in order to illustrate how we unintentionally discarded events

and how that problem has since been resolved.

A common first in first out (FIFO) trigger counter is shared between each enabled FE-I4B chip

during a run. This trigger counter starts at 0 at the beginning of a run and increments by 1 each

time an event is triggered in a given TPC. The trigger counter logs information into a “Metadata”

table on a roughly 20 Hz clock, meaning every ∼0.05 s, the trigger count is logged as the current

event number, and timestamp of both the beginning and end of this 20 Hz cycle is logged into this

table. Whenever an event is triggered in a given TPC, pixel hit data such as row and column of the

(80× 336) pixel matrix, the charge deposited in each pixel cell, and the readout time (read out in

multiples of 25 ns and not to be confused with the event timestamp) is stored into a “Hits” table.

The trigger count from the common FIFO trigger counter is also stored in this table and used as

an event counter.

Timestamps are assigned to individual events by merging the data from the Hits table in each

TPC with the Metadata table that is shared among all TPCs. Since data recorded in the Hits

tables update each time a TPC receives a trigger, it is possible that multiple events will occur

within the 20 Hz update window for the Metadata table. In cases like this, subsequent entries in

the Metadata table will show trigger count values that differ by more than 1. We illustrate this

using Tables A.1 and A.2.

Referring to these two tables, our problem of unintentionally discarding events arose when

merging the information between the Metadata table and the Hits table. Originally, when merging

these tables, we would simply add the timestamp info from the Metadata table to events in the

Hits table with Event Numbers exactly matching. For example Tables A.1 and A.2, this means we

would have discarded all events except for event numbers 1, 5, 12, and 14. Given our fixed 20 Hz

update period for the Metadata table, one can see that on average, higher proportions of events

would be discarded during high beam-background periods using our original merging scheme. We

have since fixed our procedure for merging the Hits and Metadata tables by keeping all events in

the Hits table and assigning empty timestamps to events where the Event Number in the Hits and

Metadata tables don’t match up. We then perform a linear interpolation between each subsequent

event with filled timestamps to fill the empty timestamp entries. Whenever none of the event

numbers listed in the Metadata table match a given event number in a Hits table, we simply assign

the timestamp of nearest neighbor event number from the Metadata table as the timestamp for

that event in the Hits table. Since the Metadata table updates on a 20 Hz clock, filling timestamps

167



Event Number Timestamp [s]

1 ts0

5 ts0 + 0.05

12 ts0 + 0.10

14 ts0 + 0.15

Table A.1: An example Metadata table showing the trigger counter values at each 20 Hz update
starting at our initial timestamp ts0. The fact that the event numbers increment by more than
one is attributed to multiple events being triggered in any number of TPCs within a single 0.05 s
window as can be seen in the hits table below.

TPC ID 1 1 1 2 3 1 1 2 1 2 1 2 1 3

Event Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Table A.2: An example Hits table omitting all of the pixel hit information and just showing the
TPC ID (integer identifier for a given TPC module) and the Event Number to illustrate the process
of assigning timestamps to events.

using this procedure gives us a timing uncertainty of 0.05 s.
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APPENDIX B
GAIN STABILITY MEASUREMENT FOR HIGH GAIN RUNS

B.1 Run conditions

Before determining the single electron efficiency point detailed in Chapter 7, we performed a gain

stability study where we recorded 115 hours of data using an 55Fe electron-capture X-ray source

immediately after sealing the inside of the TPC off from outside air and beginning He:CO2 gas flow.

We had not yet calibrated the gain at this point, but wanted to be operating in the single electron

efficiency regime, so we made the a priori choice to set our input gain point to 20,000. Using the

figure of merit from Ref. [76], we can estimate the voltage across both GEMs that corresponds to

this target gain:

G = 10
VGEM−V1

V2 , (B.1)

where VGEM is the voltage across the two GEMs, and V1 and V2 were determined to be 356 V and

136 V in this reference for 5.9 keV X-rays in 1 atm of He:CO2. Substituting 20,000 in for G in

Equation (B.1), we find VGEM = 941 V. To get the GEM divider circuit input voltage, Vin, that

corresponds to VGEM, we refer to previous gain calibrations with 210Po-α emission sources. These

calibrations suggest gains of O(1000) with Vin = 2100 V and a field-cage voltage VFC = 7000 V.

Substituting G into Equation (B.1), and using the previously mentioned V1 and V2 values, we find

VGEM = 760 V when Vin = 2100 V. Using this, we determine the Vin that corresponds to our target

gain of 20,000

Vin|G=20000 =
VGEM|G=20000

VGEM|G=1000
Vin|G=1000, (B.2)

and find Vin = 2600 V. To maintain a constant drift field, whenever we make adjustments to Vin,

we make an equal adjustment to the input field-cage voltage VFC. To maintain the 450 V/cm drift

field used in other studies ( Table 4.3), we set VFC = 7500 V.

During our 115 hours of data collection, we primarily record runs that are 15 minutes in length.

The 55Fe X-ray source inside the TPC is housed in Delrin shielding with a movable shutter. We test

the purity of the 55Fe X-ray sample by closing the shutter every other 15-minute run. Figure B.1

shows a 2D histogram of fiducialized 55Fe X-rays with the shutter open. The magenta points

overlaid on top show the background sample of events recorded with the source shutter closed

over the same amount of time. Comparing the counts in the samples, we find nearly 3 orders of
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Figure B.1: Uncalibrated energy versus track length distribution of fiducialized events near the
expected X-ray energy spectrum peak from the 55Fe source. The 2D histogram shows events
recorded when the source shutter was open and the magenta points show events recorded over the
same amount of elapsed time with the source shutter closed.

170



magnitude more events in the sample with the source shutter open, suggesting a very pure sample

of 55Fe X-rays when the shutter is open that we can use for gain measurements.

B.2 Gain measurements

We split the shutter-open sample of events by timestamp and partition the sample into sub-samples

that each contain 5 hours of successive measurements. We then plot the energy spectra of the events

in each of the sub-samples and fit a Gaussian profile with linear background of the form

P̂ (Euncal;A,B,C, µ̂, σ̂) = A+BEuncal + Ce
−
(
Euncal−µ̂√

2σ̂

)2
, (B.3)

to the histogram of each sub-sample, where parameters A, B, C, µ̂, and σ̂ are fit parameters to the

given sub-sample energy spectra. We compute the gain of each sub-sample as

G =
µ̂

5.9 keV
× 20000± 1.96

σG√
N

(B.4)

where we have scaled the X-ray energy spectra to a mean of 5.9 keV, σG = σ̂× 20000
5.9 keV , and N is the

number of events in the given sub-sample. Fits to 21 such sub-samples are shown in Figure B.2,

where we observe the peak of the spectra to increase in energy with time and eventually level off

(we omitted two samples due to lower measurement statistics). To quantify gain stability, we fit

the gain recorded in the time bin of each sub-sample using an exponential of the form

Ĝ(t) = α̂
(

1− e−β̂(t−γ̂)
)
. (B.5)

Here α̂ corresponds to the nominal gain, β̂ encodes the gain rise time, and γ̂ is a fit offset parameter.

From this fit, we find 5/β̂ = 96 hours and corresponds to 1 − 1/e5 ≈ 99.3% of the nominal max

gain, so we conclude we have achieved sufficiently stable gain at this point. Figure B.3 shows the

gain versus time distribution with its corresponding fit from Equation (B.5), as well as the gain

resolution (σG/G) versus time. The gain resolution drops off quickly and stabilizes at around 11%

after about 20 hours of flow.
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Figure B.2: Uncalibrated X-ray energy spectra at various time slices. The red curve shows a
Gaussian profile fit with linear background to each distribution. The spectra shifting to the right
over time is an indication of the gain increasing due to increasing He:CO2 gas purity.
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Figure B.3: Top: Gain determined by scaling the profile fits from Equation (B.3) to 5.9 keV versus
time. Bottom: Gain resolution determined from the profile fits of Equation (B.3) versus time.
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APPENDIX C
FURTHER DETAILS OF SIMULATION PACKAGES AND

PARAMETERS

Here we outline the tools and parameters used for select simulations in this thesis. We include all

simulations except for the fast simulation used in Phase 2 (Chapter 3), as these simulations were

not thoroughly logged.

C.1 Glossary of tools

1. Event generators: Geant4, SAD, BBBREM, AAFH, SRIM, retrim, and DEGRAD

2. TPC simulators: basf2: BEAST geometry

3. Code for digitizer used throughout this thesis

C.2 Chapter 3: Phase 3 neutron simulation

For these studies we use SAD, BBREM, and AAFH to generate beam backgrounds that are passed into

Geant4. The primary ionization distributions of recoil tracks in the TPC are generated in Geant4

and then passed into the digitizer.

Toolkits G4PhysicsList
Neutron cross sections

and final states

He, C, and O
cross section
scale factor

W [eV] F

Geant4 v10.6.1
SAD (Single beam)
BBBREM (RBB)

AAFH (2γ)

FTFP_BERT_HP
G4NDL4.6
JEFF3.3

100 35 0.19

Table C.1: Summary of simulation of neutron interactions and primary tracks in the TPCs for
Phase 3 Study A. The interaction cross section between neutrons and He, C, and O nuclei are
dialed up by a factor of 100 in Geant4 to increase nuclear recoil statistics. Simulated rates are then
scaled down by a factor of 100 when comparing observed and simulated rates. W and F are the
average energy per electron-ion pair and Fano factor, respoectively and are used to generate the
primary recoil ionization distribution in the TPCs.
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I[A] σy[µm] nb Luminosity [cm−2s−1]

LER 1.2 37 1576
2.5× 1035

HER 1.0 36 1576

Table C.2: Copy of Table 4.1: Machine conditions and luminosity used for SAD simulation and
BBBREM / AAFH event generators, respectively.

Background
Type

Coulomb Brems Touschek RBB 2γ

Simulated
Beam Time [s]

(LER,HER)
(4,40) (40,400) (0.4,1.6) 0.0097 0.01

Table C.3: Copy of Table 4.2: Total simulated beam time for each background process. Values
within the parenthetical numerical pairs denote the beam time of single-beam simulation samples
in each ring.

TPC z
Location

Gas
[70%:30%]

Gain
~vd

[µm/BCID]
(σT , σL)

[µm/
√

cm]
(σT,GEM, σL,GEM)

[µm]

−14 m He:CO2 797 151.68 (127, 127) (180,180)

−8.0 m He:CO2 807 216.25 (127, 127) (180,180)

−5.6 m He:CO2 1033 216.25 (127, 127) (180,180)

6.6 m He:CO2 1476 216.25 (127, 127) (180,180)

14 m He:CO2 899 216.25 (127, 127) (180,180)

16 m He:CO2 878 216.25 (127, 127) (180,180)

Table C.4: Digitization parameters for each TPC. Primary ionization distributions were generated
in Geant4 using the appropriate generators (SAD for single beams, BBBREM for RBB, and AAFH
for 2γ).
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C.3 Chapter 4: Isotropic α-particle low gain simulation

α particles are produced at the center of the fiducial (x,y) volume of the TPC in Geant4 forming

the primary ionization distributions that are passed into the digitizer. The vertices of all α particles

are at zTPC = 5 cm. We use W = 35 eV and F = 0.19.

Toolkit G4PhysicsList
Momentum range

[GeV]
θ

range [◦]
φ

range [◦]
Erecoil range

[keVr]

Geant4
v10.6.1

(ParticleGun)
FTFP_BERT_HP [−0.051, 0.051] [0, 180] [0, 360] [0.035, 525]

Table C.5: Summary of the ParticleGun module parameters used to simulate the 612,505 He recoils
described in Chapter 5.2. The momentum distribution and φ distributions are uniform and the θ
distribution is isotropic (uniform cos(θ)).

Gas
[70%:30%]

Gain
~vd

[µm/BCID]
(σT , σL)

[µm/
√

cm]
(σT,GEM, σL,GEM)

[µm]

He:CO2 909 216.25 (114, 114) (180,180)

Table C.6: Copy of Table 5.1: Digitization parameters for the sample of 612,505 He recoils described
in Chapter 5.2. σT,GEM and σL,GEM represent the transverse and longitudinal point resolution of
the readout plane, excluding the pixel chip. The W is the low energy cutoff we use for recording
ionization.
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C.4 Chapter 5: Neutrons generated with particle gun

We only show the ParticleGun neutron simulation parameters used to mimic the configuration

of the 252Cf source setup in our lab. The neutron production vertices are (xTPC, yTPC, zTPC) =

(±13, 0.84, 5.0) cm with the ’+’ and ’−’ in xTPC corresponding to the source incident on the lid and

bottom of the TPC, respectively. The digitization parameters and all other simulation parameters

are identical to what was used in Chapter 5.

Toolkit
Neutrons

Simulated [×107]
(lid, bottom)

Momentum range
[GeV]

θ
range [◦]

φ
range [◦]

Recoils after
selections

(lid, bottom)

Geant4
v10.6.1

(ParticleGun)
(6,6) [0.0015, 0.081] [88.5, 91.5] [178.5, 181.5] (34102,32056)

Table C.7: Summary of the ParticleGun module parameters used to simulate the neutrons pro-
ducing the simulated neutron-induced nuclear recoil sample described in Chapter 6. We use the
FTFP_BERT_HP physics list. The momentum distribution and φ distributions are uniform and the
θ distribution is isotropic (uniform cos(θ)). Figure 6.4 shows the nuclear recoil selection boundary
used. We only keep truth He recoils in our simulated samples.

C.5 Chapter 6: High gain simulation

We generate all primary ionization distributions passed into the digitizer using Geant4’s Particle-

Gun module. We run campaigns shooting the following from the ParticleGun:

1. Electrons (isotropic distribution)

2. α particles (isotropic distribution)

3. Low energy neutron beam with the same θ and φ envelope as in Table C.7

The electrons and α particles have vertices at the center of the fiducial (x,y) volume of the TPC

and zTPC = 8 cm. We use W = 35 eV and F = 0.19.
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Toolkit
Momentum range

[GeV]
θ

range [◦]
φ

range [◦]
Erecoil range

[keVee]

Geant4
v10.6.1

(ParticleGun)
[−0.02, 0.02] [0, 180] [0, 360] [0.035, 15.9]

Table C.8: Summary of the ParticleGun module parameters used to simulate the 675,326 electrons
used for the event selection 3DCNN.

Toolkit
θ

range [◦]
φ

range [◦]
Erecoil range

[keVr]

Geant4
v10.6.1

(ParticleGun)
[0, 180] [0, 360] [0.035, 50]

Table C.9: Summary of the ParticleGun module parameters used to simulate the 101,739 α particles
used for the event selection and head-tail 3DCNN. The momentum range was not logged for this.

Toolkit
θ

range [◦]
φ

range [◦]
Erecoil range

[keVr]
n production vertex

(TPC coordinates [cm])

Geant4
v10.6.1

(ParticleGun)
[88.5, 91.5] [178.5, 181.5] [1, 35] (±13,0.84,8.0)

Table C.10: Summary of the ParticleGun module parameters used to simulate the 269,745 He, C,
and O nuclear recoil samples generated from the neutron beam generated from the ParticleGun
module. The neutron production vertices with xTPC > 0 correspond to the source incident on lid
of the TPC (xTPC < 0 vertex is source-on-bottom). The number of neutrons generated to produce
these recoils and the momentum range of the neutrons were not logged.

Gas
[70%:30%]

Gain
~vd

[µm/BCID]
(σT , σL)

[µm]
(σT,GEM, σL,GEM)

[µm]

He:CO2 15,000 216.25 (134.8, 128.2) (143,97)

Table C.11: Copy of Table 7.1: Digitization parameters for the high gain head-tail simulation
campaign. σT,GEM and σL,GEM represent the transverse and longitudinal point resolution of the
readout plane, excluding the pixel chip. The diffusion parameters were computed using Magboltz

and should be more representative of measurement than the diffusion coefficients used in Table C.6.
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C.6 Chapter 7: Simulation for electron rejection study in He:CF4:CHF3

We use SRIM and retrim to simulate recoiling He and F nuclei and DEGRAD to simulate electron

recoils in an 80:10:10 mixture of He:CF4:CHF3 at a total pressure of 60 Torr and temperature of

25◦C

Gas
[80%:10%:10%]

W
[eV]

We

[eV]
F

~Ed
[V/cm]

(σT , σL)
[µm/

√
cm]

Cij

He:CF4:CHF3 35.0 32.4 0.19 40.6 (398, 425)
1.00 1.00 1.00 1.00
0.957 0.959 0.974 0.974
0.969 0.965 0.991 0.991

Table C.12: Key simulation parameters used for this study. We is the average energy per
electron-ion pair used to compute electron equivalent energies, and F is the Fano factor. Cij
shows the compound correction factors used in SRIM and retrim. The columns of C represent
j = {He, H, C, and F}, respectively and the rows of C represent i = {He, CH3, and CHF3}, re-
spectively. The second row and fourth column of C would thus be read as the compound correction
of F recoils in CF4.
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APPENDIX D
CODE AVAILABILITY

Select simulation and data processing code is available here upon request.
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